Invert Binary Tree - Change to Mirror Tree
Last Updated :
23 Jul, 2025
Given a binary tree, the task is to convert the binary tree to its Mirror tree. Mirror of a Binary Tree T is another Binary Tree M(T) with left and right children of all non-leaf nodes interchanged.
Example 1:
Explanation: In the inverted tree, every non-leaf node has its left and right child interchanged.
Example 2:
Explanation: In the inverted tree, every non-leaf node has its left and right child interchanged.
Recursive Approach - O(n) Time and O(h) Space
The idea is to use recursion to traverse the tree in Post Order (left, right, root) and while traversing each node, swap the left and right subtrees.
C++
//Driver Code Starts
// C++ Program Invert a Binary Tree using Recursive Postorder
#include <iostream>
#include <queue>
using namespace std;
class Node {
public:
int data;
Node *left, *right;
Node(int x) {
data = x;
left = nullptr;
right = nullptr;
}
};
//Driver Code Ends
// function to return the root of inverted tree
void mirror(Node* root) {
if (root == nullptr)
return ;
// Invert the left and right subtree
mirror(root->left);
mirror(root->right);
// Swap the left and right subtree
swap(root->left, root->right);
}
// Print tree as level order
void levelOrder(Node *root) {
if (root == nullptr) {
cout << "N ";
return ;
}
queue<Node*> qq;
qq.push(root);
while (!qq.empty()) {
Node *curr = qq.front();
qq.pop();
if (curr == nullptr) {
cout << "N ";
continue;
}
cout << (curr->data) << " ";
qq.push(curr->left);
qq.push(curr->right);
}
}
//Driver Code Starts
int main() {
// Input Tree:
// 1
// / \
// 2 3
// / \
// 4 5
Node* root = new Node(1);
root->left = new Node(2);
root->right = new Node(3);
root->left->left = new Node(4);
root->left->right = new Node(5);
mirror(root);
// Mirror Tree:
// 1
// / \
// 3 2
// / \
// 5 4
levelOrder(root);
return 0;
}
//Driver Code Ends
C
//Driver Code Starts
// C Program Invert a Binary Tree using Recursive Postorder
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
typedef struct Node {
int data;
struct Node* left;
struct Node* right;
} Node;
// Function to create a new node
Node* newNode(int x) {
Node* node = (Node*)malloc(sizeof(Node));
node->data = x;
node->left = NULL;
node->right = NULL;
return node;
}
//Driver Code Ends
// Function to return the root of inverted tree
void mirror(Node* root) {
if (root == NULL)
return ;
// Invert the left and right subtree
mirror(root->left);
mirror(root->right);
// Swap the left and right subtree
struct Node* temp = root->left;
root->left = root->right;
root->right = temp;
}
// Print tree as level order
void levelOrder(Node* root) {
if (root == NULL) {
printf("N ");
return;
}
Node* queue[100];
int front = 0, rear = 0;
queue[rear++] = root;
while (front < rear) {
Node* curr = queue[front++];
if (curr == NULL) {
printf("N ");
continue;
}
printf("%d ", curr->data);
queue[rear++] = curr->left;
queue[rear++] = curr->right;
}
}
//Driver Code Starts
int main() {
// Input Tree:
// 1
// / \
// 2 3
// / \
// 4 5
Node* root = newNode(1);
root->left = newNode(2);
root->right = newNode(3);
root->left->left = newNode(4);
root->left->right = newNode(5);
mirror(root);
// Mirror Tree:
// 1
// / \
// 3 2
// / \
// 5 4
levelOrder(root);
return 0;
}
//Driver Code Ends
Java
//Driver Code Starts
// Java Program Invert a Binary Tree using Recursive Postorder
import java.util.LinkedList;
import java.util.Queue;
class Node {
int data;
Node left, right;
Node(int x) {
data = x;
left = null;
right = null;
}
}
class GfG {
//Driver Code Ends
// Function to return the root of inverted tree
static void mirror(Node root) {
if (root == null)
return ;
// Invert the left and right subtree
mirror(root.left);
mirror(root.right);
// Swap the left and right subtree
Node temp = root.left;
root.left = root.right;
root.right = temp;
}
// Print tree as level order
static void levelOrder(Node root) {
if (root == null) {
System.out.print("N ");
return;
}
Queue<Node> queue = new LinkedList<>();
queue.add(root);
while (!queue.isEmpty()) {
Node curr = queue.poll();
if (curr == null) {
System.out.print("N ");
continue;
}
System.out.print(curr.data + " ");
queue.add(curr.left);
queue.add(curr.right);
}
}
//Driver Code Starts
public static void main(String[] args) {
// Input Tree:
// 1
// / \
// 2 3
// / \
// 4 5
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
mirror(root);
// Mirror Tree:
// 1
// / \
// 3 2
// / \
// 5 4
levelOrder(root);
}
}
//Driver Code Ends
Python
#Driver Code Starts
# Python Program Invert a Binary Tree using Recursive Postorder
from collections import deque
class Node:
def __init__(self, x):
self.data = x
self.left = None
self.right = None
#Driver Code Ends
# Function to return the root of inverted tree
def mirror(root):
if root is None:
return
# Invert the left and right subtree
mirror(root.left)
mirror(root.right)
# Swap the left and right subtree
temp = root.left
root.left = root.right
root.right = temp
# Print tree as level order
def levelOrder(root):
if root is None:
print("N ", end="")
return
queue = deque([root])
while queue:
curr = queue.popleft()
if curr is None:
print("N ", end="")
continue
print(curr.data, end=" ")
queue.append(curr.left)
queue.append(curr.right)
#Driver Code Starts
if __name__ == "__main__":
# Input Tree:
# 1
# / \
# 2 3
# / \
# 4 5
root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)
mirror(root)
# Mirror Tree:
# 1
# / \
# 3 2
# / \
# 5 4
levelOrder(root)
#Driver Code Ends
C#
//Driver Code Starts
// C# Program Invert a Binary Tree using Recursive Postorder
using System;
using System.Collections.Generic;
class Node {
public int data;
public Node left, right;
public Node(int x) {
data = x;
left = null;
right = null;
}
}
class GfG {
//Driver Code Ends
// Function to return the root of inverted tree
static void mirror(Node root) {
if (root == null)
return ;
// Invert the left and right subtree
mirror(root.left);
mirror(root.right);
// Swap the left and right subtree
Node temp = root.left;
root.left = root.right;
root.right = temp;
}
// Print tree as level order
static void levelOrder(Node root) {
if (root == null) {
Console.Write("N ");
return;
}
Queue<Node> queue = new Queue<Node>();
queue.Enqueue(root);
while (queue.Count > 0) {
Node curr = queue.Dequeue();
if (curr == null) {
Console.Write("N ");
continue;
}
Console.Write(curr.data + " ");
queue.Enqueue(curr.left);
queue.Enqueue(curr.right);
}
}
//Driver Code Starts
static void Main(string[] args) {
// Input Tree:
// 1
// / \
// 2 3
// / \
// 4 5
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
mirror(root);
// Mirror Tree:
// 1
// / \
// 3 2
// / \
// 5 4
levelOrder(root);
}
}
//Driver Code Ends
JavaScript
//Driver Code Starts
// JavaScript Program Invert a Binary Tree using Recursive Postorder
class Node {
constructor(x) {
this.data = x;
this.left = null;
this.right = null;
}
}
//Driver Code Ends
// Function to return the root of inverted tree
function mirror(root) {
if (root === null)
return;
// Invert the left and right subtree
mirror(root.left);
mirror(root.right);
// Swap the left and right subtree
let temp = root.left;
root.left = root.right;
root.right = temp;
}
// Print tree as level order
function levelOrder(root) {
if (root === null) {
process.stdout.write("N ");
return;
}
let queue = [];
queue.push(root);
while (queue.length > 0) {
let curr = queue.shift();
if (curr === null) {
process.stdout.write("N ");
continue;
}
process.stdout.write(curr.data + " ");
queue.push(curr.left);
queue.push(curr.right);
}
}
//Driver Code Starts
// Driver Code
// Input Tree:
// 1
// / \
// 2 3
// / \
// 4 5
let root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
mirror(root);
// Mirror Tree:
// 1
// / \
// 3 2
// / \
// 5 4
levelOrder(root);
//Driver Code Ends
Output1 3 2 N N 5 4 N N N N
Time Complexity: O(n), Visiting all the nodes of the tree of size n.
Auxiliary Space: O(h), where h is the height of binary tree.
Iterative Approach - O(n) Time and O(n) Space
The idea is to perform Level Order Traversal using a queue to store the nodes whose left and right pointers need to be swapped. Start with the root node. Till queue is not empty, remove the node from the front, swap its left and right child and push both of the children into the queue. After iterating over all the nodes, we will get the mirror tree.
C++
//Driver Code Starts
// C++ Program Invert a Binary Tree using Iterative Level Order
#include <iostream>
#include <queue>
using namespace std;
struct Node {
int data;
Node *left, *right;
Node(int x) {
data = x;
left = nullptr;
right = nullptr;
}
};
//Driver Code Ends
// function to return the root of inverted tree
void mirror(Node* root) {
if (root == nullptr)
return ;
queue<Node*> q;
q.push(root);
// Traverse the tree, level by level
while(!q.empty()) {
Node* curr = q.front();
q.pop();
// Swap the left and right subtree
swap(curr->left, curr->right);
// Push the left and right node to the queue
if(curr->left != nullptr)
q.push(curr->left);
if(curr->right != nullptr)
q.push(curr->right);
}
}
// Print tree as level order
void levelOrder(Node *root) {
if (root == nullptr) {
cout << "N ";
return ;
}
queue<Node*> qq;
qq.push(root);
while (!qq.empty()) {
Node *curr = qq.front();
qq.pop();
if (curr == nullptr) {
cout << "N ";
continue;
}
cout << (curr->data) << " ";
qq.push(curr->left);
qq.push(curr->right);
}
}
//Driver Code Starts
int main() {
// Input Tree:
// 1
// / \
// 2 3
// / \
// 4 5
Node* root = new Node(1);
root->left = new Node(2);
root->right = new Node(3);
root->left->left = new Node(4);
root->left->right = new Node(5);
mirror(root);
// Mirror Tree:
// 1
// / \
// 3 2
// / \
// 5 4
levelOrder(root);
return 0;
}
//Driver Code Ends
C
//Driver Code Starts
// C Program Invert a Binary Tree using Iterative Level Order
#include <stdio.h>
#include <stdlib.h>
// Node structure
typedef struct Node {
int data;
struct Node* left;
struct Node* right;
} Node;
// Function to create a new node
Node* newNode(int x) {
Node* node = (Node*)malloc(sizeof(Node));
node->data = x;
node->left = NULL;
node->right = NULL;
return node;
}
//Driver Code Ends
// Function to return the root of inverted tree
void mirror(Node* root) {
if (root == NULL)
return;
Node* queue[100];
int front = 0, rear = 0;
queue[rear++] = root;
// Traverse the tree, level by level
while (front < rear) {
Node* curr = queue[front++];
// Swap the left and right subtree
Node* temp = curr->left;
curr->left = curr->right;
curr->right = temp;
// Push the left and right node to the queue
if (curr->left != NULL)
queue[rear++] = curr->left;
if (curr->right != NULL)
queue[rear++] = curr->right;
}
}
// Print tree as level order
void levelOrder(Node* root) {
if (root == NULL) {
printf("N ");
return;
}
Node* queue[100];
int front = 0, rear = 0;
queue[rear++] = root;
while (front < rear) {
Node* curr = queue[front++];
if (curr == NULL) {
printf("N ");
continue;
}
printf("%d ", curr->data);
queue[rear++] = curr->left;
queue[rear++] = curr->right;
}
}
//Driver Code Starts
int main() {
// Input Tree:
// 1
// / \
// 2 3
// / \
// 4 5
Node* root = newNode(1);
root->left = newNode(2);
root->right = newNode(3);
root->left->left = newNode(4);
root->left->right = newNode(5);
mirror(root);
// Mirror Tree:
// 1
// / \
// 3 2
// / \
// 5 4
levelOrder(root);
return 0;
}
//Driver Code Ends
Java
//Driver Code Starts
// Java Program Invert a Binary Tree using Iterative Level Order
import java.util.LinkedList;
import java.util.Queue;
class Node {
int data;
Node left, right;
Node(int x) {
data = x;
left = null;
right = null;
}
}
class GfG {
//Driver Code Ends
// Function to return the root of inverted tree
static void mirror(Node root) {
if (root == null)
return;
Queue<Node> queue = new LinkedList<>();
queue.add(root);
// Traverse the tree, level by level
while (!queue.isEmpty()) {
Node curr = queue.poll();
// Swap the left and right subtree
Node temp = curr.left;
curr.left = curr.right;
curr.right = temp;
// Push the left and right node to the queue
if (curr.left != null)
queue.add(curr.left);
if (curr.right != null)
queue.add(curr.right);
}
}
// Print tree as level order
static void levelOrder(Node root) {
if (root == null) {
System.out.print("N ");
return;
}
Queue<Node> queue = new LinkedList<>();
queue.add(root);
while (!queue.isEmpty()) {
Node curr = queue.poll();
if (curr == null) {
System.out.print("N ");
continue;
}
System.out.print(curr.data + " ");
queue.add(curr.left);
queue.add(curr.right);
}
}
//Driver Code Starts
public static void main(String[] args) {
// Input Tree:
// 1
// / \
// 2 3
// / \
// 4 5
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
mirror(root);
// Mirror Tree:
// 1
// / \
// 3 2
// / \
// 5 4
levelOrder(root);
}
}
//Driver Code Ends
Python
#Driver Code Starts
# Python Program Invert a Binary Tree using Iterative Level Order
from collections import deque
class Node:
def __init__(self, x):
self.data = x
self.left = None
self.right = None
#Driver Code Ends
# Function to return the root of inverted tree
def mirror(root):
if root is None:
return
queue = deque([root])
# Traverse the tree, level by level
while queue:
curr = queue.popleft()
# Swap the left and right subtree
curr.left, curr.right = curr.right, curr.left
# Push the left and right node to the queue
if curr.left:
queue.append(curr.left)
if curr.right:
queue.append(curr.right)
# Print tree as level order
def levelOrder(root):
if root is None:
print("N ", end="")
return
queue = deque([root])
while queue:
curr = queue.popleft()
if curr is None:
print("N ", end="")
continue
print(curr.data, end=" ")
queue.append(curr.left)
queue.append(curr.right)
#Driver Code Starts
if __name__ == "__main__":
# Input Tree:
# 1
# / \
# 2 3
# / \
# 4 5
root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)
mirror(root)
# Mirror Tree:
# 1
# / \
# 3 2
# / \
# 5 4
levelOrder(root)
#Driver Code Ends
C#
//Driver Code Starts
// C# Program Invert a Binary Tree using Iterative Level Order
using System;
using System.Collections.Generic;
class Node {
public int data;
public Node left, right;
public Node(int x) {
data = x;
left = null;
right = null;
}
}
class GfG {
//Driver Code Ends
// Function to return the root of inverted tree
static void mirror(Node root) {
if (root == null)
return;
Queue<Node> queue = new Queue<Node>();
queue.Enqueue(root);
// Traverse the tree, level by level
while (queue.Count > 0) {
Node curr = queue.Dequeue();
// Swap the left and right subtree
Node temp = curr.left;
curr.left = curr.right;
curr.right = temp;
// Push the left and right node to the queue
if (curr.left != null)
queue.Enqueue(curr.left);
if (curr.right != null)
queue.Enqueue(curr.right);
}
}
// Print tree as level order
static void levelOrder(Node root) {
if (root == null) {
Console.Write("N ");
return;
}
Queue<Node> queue = new Queue<Node>();
queue.Enqueue(root);
while (queue.Count > 0) {
Node curr = queue.Dequeue();
if (curr == null) {
Console.Write("N ");
continue;
}
Console.Write(curr.data + " ");
queue.Enqueue(curr.left);
queue.Enqueue(curr.right);
}
}
//Driver Code Starts
static void Main(string[] args) {
// Input Tree:
// 1
// / \
// 2 3
// / \
// 4 5
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
mirror(root);
// Mirror Tree:
// 1
// / \
// 3 2
// / \
// 5 4
levelOrder(root);
}
}
//Driver Code Ends
JavaScript
//Driver Code Starts
// JavaScript Program Invert a Binary Tree using Iterative Level Order
class Node {
constructor(x) {
this.data = x;
this.left = null;
this.right = null;
}
}
//Driver Code Ends
// Function to return the root of inverted tree
function mirror(root) {
if (root === null)
return;
let queue = [];
queue.push(root);
// Traverse the tree, level by level
while (queue.length > 0) {
let curr = queue.shift();
// Swap the left and right subtree
[curr.left, curr.right] = [curr.right, curr.left];
// Push the left and right node to the queue
if (curr.left)
queue.push(curr.left);
if (curr.right)
queue.push(curr.right);
}
}
// Print tree as level order
function levelOrder(root) {
if (root === null) {
process.stdout.write("N ");
return;
}
let queue = [];
queue.push(root);
while (queue.length > 0) {
let curr = queue.shift();
if (curr === null) {
process.stdout.write("N ");
continue;
}
process.stdout.write(curr.data + " ");
queue.push(curr.left);
queue.push(curr.right);
}
}
//Driver Code Starts
// Driver Code
// Input Tree:
// 1
// / \
// 2 3
// / \
// 4 5
let root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
mirror(root);
// Mirror Tree:
// 1
// / \
// 3 2
// / \
// 5 4
levelOrder(root);
//Driver Code Ends
Output1 3 2 N N 5 4 N N N N
Time Complexity: O(n), fro traversing over the tree of size n.
Auxiliary Space: O(n), used by queue to store the nodes of the tree.
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem