Vertical width of Binary tree | Set 1
Last Updated :
11 Mar, 2023
Given a Binary tree, the task is to find the vertical width of the Binary tree. The width of a binary tree is the number of vertical paths in the Binary tree.
Examples:
Input:

Output: 6
Explanation: In this image, the tree contains 6 vertical lines which are the required width of the tree.
Input :
7
/ \
6 5
/ \ / \
4 3 2 1
Output : 5
Input:
1
/ \
2 3
/ \ / \
4 5 6 7
\ \
8 9
Output : 6
Approach:
Take inorder traversal and then take a temp variable to keep the track of unique vertical paths. when moving to left of the node then temp decreases by one and if goes to right then temp value increases by one. If the minimum is greater than temp, then update minimum = temp and if maximum less than temp then update maximum = temp. The vertical width of the tree will be equal to abs(minimum ) + maximum.
Follow the below steps to Implement the idea:
- Initialize a minimum and maximum variable to track the left-most and right-most index.
- Run Depth-first search traversal and maintain the current horizontal index curr, for root curr = 0.
- Traverse left subtree with curr = curr-1
- Update maximum with curr if curr > maximum.
- Update minimum with curr if curr < minimum.
- Traverse right subtree with curr = curr + 1.
- Print the vertical width of the tree i.e. abs(minimum ) + maximum.
Below is the Implementation of the above approach:
C++
// CPP program to print vertical width
// of a tree
#include <bits/stdc++.h>
using namespace std;
// A Binary Tree Node
struct Node {
int data;
struct Node *left, *right;
};
// get vertical width
void lengthUtil(Node* root, int& maximum, int& minimum,
int curr = 0)
{
if (root == NULL)
return;
// traverse left
lengthUtil(root->left, maximum, minimum, curr - 1);
// if curr is decrease then get
// value in minimum
if (minimum > curr)
minimum = curr;
// if curr is increase then get
// value in maximum
if (maximum < curr)
maximum = curr;
// traverse right
lengthUtil(root->right, maximum, minimum, curr + 1);
}
int getLength(Node* root)
{
int maximum = 0, minimum = 0;
lengthUtil(root, maximum, minimum, 0);
// 1 is added to include root in the width
return (abs(minimum) + maximum) + 1;
}
// Utility function to create a new tree node
Node* newNode(int data)
{
Node* curr = new Node;
curr->data = data;
curr->left = curr->right = NULL;
return curr;
}
// Driver program to test above functions
int main()
{
Node* root = newNode(7);
root->left = newNode(6);
root->right = newNode(5);
root->left->left = newNode(4);
root->left->right = newNode(3);
root->right->left = newNode(2);
root->right->right = newNode(1);
cout << getLength(root) << "\n";
return 0;
}
Java
// Java program to print vertical width
// of a tree
import java.util.*;
class GFG {
// A Binary Tree Node
static class Node {
int data;
Node left, right;
};
static int maximum = 0, minimum = 0;
// get vertical width
static void lengthUtil(Node root, int curr)
{
if (root == null)
return;
// traverse left
lengthUtil(root.left, curr - 1);
// if curr is decrease then get
// value in minimum
if (minimum > curr)
minimum = curr;
// if curr is increase then get
// value in maximum
if (maximum < curr)
maximum = curr;
// traverse right
lengthUtil(root.right, curr + 1);
}
static int getLength(Node root)
{
maximum = 0;
minimum = 0;
lengthUtil(root, 0);
// 1 is added to include root in the width
return (Math.abs(minimum) + maximum) + 1;
}
// Utility function to create a new tree node
static Node newNode(int data)
{
Node curr = new Node();
curr.data = data;
curr.left = curr.right = null;
return curr;
}
// Driver Code
public static void main(String[] args)
{
Node root = newNode(7);
root.left = newNode(6);
root.right = newNode(5);
root.left.left = newNode(4);
root.left.right = newNode(3);
root.right.left = newNode(2);
root.right.right = newNode(1);
System.out.println(getLength(root));
}
}
// This code is contributed by Rajput-Ji
Python3
# Python3 program to print vertical width
# of a tree
# class to create a new tree node
class newNode:
def __init__(self, data):
self.data = data
self.left = self.right = None
# get vertical width
def lengthUtil(root, maximum, minimum, curr=0):
if (root == None):
return
# traverse left
lengthUtil(root.left, maximum,
minimum, curr - 1)
# if curr is decrease then get
# value in minimum
if (minimum[0] > curr):
minimum[0] = curr
# if curr is increase then get
# value in maximum
if (maximum[0] < curr):
maximum[0] = curr
# traverse right
lengthUtil(root.right, maximum,
minimum, curr + 1)
def getLength(root):
maximum = [0]
minimum = [0]
lengthUtil(root, maximum, minimum, 0)
# 1 is added to include root in the width
return (abs(minimum[0]) + maximum[0]) + 1
# Driver Code
if __name__ == '__main__':
root = newNode(7)
root.left = newNode(6)
root.right = newNode(5)
root.left.left = newNode(4)
root.left.right = newNode(3)
root.right.left = newNode(2)
root.right.right = newNode(1)
print(getLength(root))
# This code is contributed by PranchalK
C#
// C# program to print vertical width
// of a tree
using System;
class GFG {
// A Binary Tree Node
public class Node {
public int data;
public Node left, right;
};
static int maximum = 0, minimum = 0;
// get vertical width
static void lengthUtil(Node root, int curr)
{
if (root == null)
return;
// traverse left
lengthUtil(root.left, curr - 1);
// if curr is decrease then get
// value in minimum
if (minimum > curr)
minimum = curr;
// if curr is increase then get
// value in maximum
if (maximum < curr)
maximum = curr;
// traverse right
lengthUtil(root.right, curr + 1);
}
static int getLength(Node root)
{
maximum = 0;
minimum = 0;
lengthUtil(root, 0);
// 1 is added to include root in the width
return (Math.Abs(minimum) + maximum) + 1;
}
// Utility function to create a new tree node
static Node newNode(int data)
{
Node curr = new Node();
curr.data = data;
curr.left = curr.right = null;
return curr;
}
// Driver Code
public static void Main(String[] args)
{
Node root = newNode(7);
root.left = newNode(6);
root.right = newNode(5);
root.left.left = newNode(4);
root.left.right = newNode(3);
root.right.left = newNode(2);
root.right.right = newNode(1);
Console.WriteLine(getLength(root));
}
}
// This code is contributed by PrinciRaj1992
JavaScript
<script>
// JavaScript program to prvertical width
// of a tree
// class to create a new tree node
class newNode{
constructor(data){
this.data = data
this.left = this.right = null
}
}
// get vertical width
function lengthUtil(root, maximum, minimum, curr = 0){
if (root == null)
return
// traverse left
lengthUtil(root.left, maximum,
minimum, curr - 1)
// if curr is decrease then get
// value in minimum
if (minimum[0] > curr)
minimum[0] = curr
// if curr is increase then get
// value in maximum
if (maximum[0] <curr)
maximum[0] = curr
// traverse right
lengthUtil(root.right, maximum,
minimum, curr + 1)
}
function getLength(root)
{
let maximum = [0]
let minimum = [0]
lengthUtil(root, maximum, minimum, 0)
// 1 is added to include root in the width
return (Math.abs(minimum[0]) + maximum[0]) + 1
}
// Driver Code
root = new newNode(7)
root.left = new newNode(6)
root.right = new newNode(5)
root.left.left = new newNode(4)
root.left.right = new newNode(3)
root.right.left = new newNode(2)
root.right.right = new newNode(1)
document.write(getLength(root),"</br>")
// This code is contributed by shinjanpatra.
</script>
Time Complexity: O(n)
Auxiliary Space: O(h) where h is the height of the binary tree. This much space is needed for recursive calls.
Below is the idea to solve the problem:
Create a class to store the node and the horizontal level of the node. The horizontal level of left node will be 1 less than its parent, and horizontal level of the right node will be 1 more than its parent. We create a minLevel variable to store the minimum horizontal level or the leftmost node in the tree, and a maxLevel variable to store the maximum horizontal level or the rightmost node in the tree. Traverse the tree in level order and store the minLevel and maxLevel. In the end, print sum of maxLevel and absolute value of minLevel which is the vertical width of the tree.
Follow the below steps to Implement the idea:
- Initialize two variables maxLevel = 0 and minLevel = 0 and queue Q of pair of the type (Node*, Integer).
- Push (root, 0) in Q.
- Run while loop till Q is not empty
- Store the front node of the Queue in cur and the current horizontal level in count.
- If curr->left is not null then push (root->left, count-1) and update minLevel with min(minLevel, count-1).
- If curr->right is not null then push (root->right, count+1) and update maxLevel with max(maxLevel, count+1).
- Print maxLevel + abs(minLevel) + 1.
Below is the Implementation of the above approach:
C++
// C++ program to find Vertical Height of a tree
#include <bits/stdc++.h>
#include <iostream>
using namespace std;
struct Node {
int data;
struct Node* left;
struct Node* right;
Node(int x)
{
data = x;
left = right = NULL;
}
};
int verticalWidth(Node* root)
{
// Code here
if (root == NULL)
return 0;
int maxLevel = 0, minLevel = 0;
queue<pair<Node*, int> > q;
q.push({ root, 0 }); // we take root as 0
// Level order traversal code
while (q.empty() != true) {
Node* cur = q.front().first;
int count = q.front().second;
q.pop();
if (cur->left) {
minLevel = min(minLevel,
count - 1); // as we go left,
// level is decreased
q.push({ cur->left, count - 1 });
}
if (cur->right) {
maxLevel = max(maxLevel,
count + 1); // as we go right,
// level is increased
q.push({ cur->right, count + 1 });
}
}
return maxLevel + abs(minLevel)
+ 1; // +1 for the root node, we gave it a value
// of zero
}
int main()
{
// making the tree
Node* root = new Node(7);
root->left = new Node(6);
root->right = new Node(5);
root->left->left = new Node(4);
root->left->right = new Node(3);
root->right->left = new Node(2);
root->right->right = new Node(1);
cout << "Vertical width is : " << verticalWidth(root)
<< endl;
return 0;
}
// code contributed by Anshit Bansal
Java
// Java program to print vertical width
// of a tree
import java.util.*;
class GFG {
// A Binary Tree Node
static class Node {
int data;
Node left, right;
};
static class Pair {
Node node;
int level; // Horizontal Level
Pair(Node node, int level)
{
this.node = node;
this.level = level;
}
}
static int maxLevel = 0, minLevel = 0;
// get vertical width
static void lengthUtil(Node root)
{
Queue<Pair> q = new ArrayDeque<>();
// Adding the root node initially with level as 0;
q.add(new Pair(root, 0));
while (q.size() > 0) {
// removing the node at the peek of queue;
Pair rem = q.remove();
// If the left child of removed node exists
if (rem.node.left != null) {
// level of the left child will be 1 less
// than its parent
q.add(
new Pair(rem.node.left, rem.level - 1));
// updating the minLevel
minLevel
= Math.min(minLevel, rem.level - 1);
}
// If the right child of removed node exists
if (rem.node.right != null) {
// level of the right child will be 1 more
// than its parent
q.add(new Pair(rem.node.right,
rem.level + 1));
// updating the minLevel
maxLevel
= Math.max(minLevel, rem.level + 1);
}
}
}
static int getLength(Node root)
{
maxLevel = 0;
minLevel = 0;
lengthUtil(root);
// 1 is added to include root in the width
return (Math.abs(minLevel) + maxLevel) + 1;
}
// Utility function to create a new tree node
static Node newNode(int data)
{
Node curr = new Node();
curr.data = data;
curr.left = curr.right = null;
return curr;
}
// Driver Code
public static void main(String[] args)
{
Node root = newNode(7);
root.left = newNode(6);
root.right = newNode(5);
root.left.left = newNode(4);
root.left.right = newNode(3);
root.right.left = newNode(2);
root.right.right = newNode(1);
System.out.println(getLength(root));
}
}
// This code is contributed by Archit Sharma
Python3
# Python code for the above approach
class Node:
# A Binary Tree Node
def __init__(self, data):
self.data = data
self.left = None
self.right = None
# get vertical width
def verticalWidth(root):
if root == None:
return 0
maxLevel = 0
minLevel = 0
q = []
# Adding the root node initially with level as 0;
q.append([root, 0]) # we take root as 0
# Level order traversal code
while len(q) != 0:
# removing the node at the peek of queue;
cur, count = q.pop(0)
# If the left child of removed node exists
if cur.left:
# updating the minLevel
minLevel = min(minLevel, count - 1)
# level of the left child will be 1 less than its parent
q.append([cur.left, count - 1])
# If the right child of removed node exists
if cur.right:
# updating the maxLevel
maxLevel = max(maxLevel, count + 1)
# level of the right child will be 1 more
# than its parent
q.append([cur.right, count + 1])
return maxLevel + abs(minLevel) + 1
# making the tree
root = Node(7)
root.left = Node(6)
root.right = Node(5)
root.left.left = Node(4)
root.left.right = Node(3)
root.right.left = Node(2)
root.right.right = Node(1)
print("Vertical width is : ", verticalWidth(root))
# This code is contributed by Potta Lokesh
C#
// C# program to print vertical width of a tree
using System;
using System.Collections;
public class GFG {
// A Binary Tree Node
class Node {
public int data;
public Node left, right;
};
class Pair {
public Node node;
public int level; // Horizontal Level
public Pair(Node node, int level)
{
this.node = node;
this.level = level;
}
}
static int maxLevel = 0, minLevel = 0;
// get vertical width
static void lengthUtil(Node root)
{
Queue q = new Queue();
// Adding the root node initially with level as 0;
q.Enqueue(new Pair(root, 0));
while (q.Count > 0) {
// removing the node at the peek of queue;
Pair rem = (Pair)q.Dequeue();
// If the left child of removed node exists
if (rem.node.left != null) {
// level of the left child will be 1 less
// than its parent
q.Enqueue(
new Pair(rem.node.left, rem.level - 1));
// updating the minLevel
minLevel
= Math.Min(minLevel, rem.level - 1);
}
// If the right child of removed node exists
if (rem.node.right != null) {
// level of the right child will be 1 more
// than its parent
q.Enqueue(new Pair(rem.node.right,
rem.level + 1));
// updating the minLevel
maxLevel
= Math.Max(minLevel, rem.level + 1);
}
}
}
static int getLength(Node root)
{
maxLevel = 0;
minLevel = 0;
lengthUtil(root);
// 1 is added to include root in the width
return (Math.Abs(minLevel) + maxLevel) + 1;
}
// Utility function to create a new tree node
static Node newNode(int data)
{
Node curr = new Node();
curr.data = data;
curr.left = curr.right = null;
return curr;
}
static public void Main()
{
// Code
Node root = newNode(7);
root.left = newNode(6);
root.right = newNode(5);
root.left.left = newNode(4);
root.left.right = newNode(3);
root.right.left = newNode(2);
root.right.right = newNode(1);
Console.WriteLine(getLength(root));
}
}
// This code is contributed by lokeshmvs21.
JavaScript
class Node {
constructor(x) {
this.data = x;
this.left = null;
this.right = null;
}
}
function verticalWidth(root) {
if (!root) {
return 0;
}
let maxLevel = 0;
let minLevel = 0;
const q = [];
q.push([root, 0]); // we take root as 0
// Level order traversal code
while (q.length !== 0) {
const [cur, count] = q.shift();
if (cur.left) {
minLevel = Math.min(minLevel, count - 1); // as we go left, level is decreased
q.push([cur.left, count - 1]);
}
if (cur.right) {
maxLevel = Math.max(maxLevel, count + 1); // as we go right, level is increased
q.push([cur.right, count + 1]);
}
}
return maxLevel + Math.abs(minLevel) + 1; // +1 for the root node, we gave it a value of zero
}
// making the tree
const root = new Node(7);
root.left = new Node(6);
root.right = new Node(5);
root.left.left = new Node(4);
root.left.right = new Node(3);
root.right.left = new Node(2);
root.right.right = new Node(1);
console.log("Vertical width is: ", verticalWidth(root));
Time Complexity: O(n). This much time is needed to traverse the tree.
Auxiliary Space: O(n). This much space is needed to maintain the queue.
Similar Reads
Vertical width of Binary tree | Set 2
Given a binary tree, find the vertical width of the binary tree. The width of a binary tree is the number of vertical paths. Examples: Input : 7 / \ 6 5 / \ / \ 4 3 2 1 Output : 5 Input : 1 / \ 2 3 / \ / \ 4 5 6 7 \ \ 8 9 Output : 6 Prerequisite: Print Binary Tree in Vertical order In this image, th
5 min read
Vertical Traversal of a Binary Tree
Given a Binary Tree, the task is to find its vertical traversal starting from the leftmost level to the rightmost level. If multiple nodes pass through a vertical line, they should be printed as they appear in the level order traversal of the tree.Examples: Input:Output: [[4], [2], [1, 5, 6], [3, 8]
10 min read
Vertical Sum in a given Binary Tree
Given a Binary Tree, find the vertical sum of the nodes that are in the same vertical line.Input:Output: 4 2 12 11 7 9Explanation: The below image shows the horizontal distances used to print vertical traversal starting from the leftmost level to the rightmost level.Table of ContentUsing map - O(n l
15 min read
Validate the Binary Tree Nodes
Given N nodes numbered from 0 to n-1, also given the E number of directed edges, determine whether the given nodes all together form a single binary tree or not. Examples: Input: N = 4, edges[][] = [[0 1], [0 2], [2 3]] Output: trueExplanation: Form a single binary tree with a unique root node. Inpu
6 min read
Sum of all vertical levels of a Binary Tree
Given a binary tree consisting of either 1 or 0 as its node values, the task is to find the sum of all vertical levels of the Binary Tree, considering each value to be a binary representation. Examples: Input: 1 / \ 1 0 / \ / \ 1 0 1 0Output: 7Explanation: Taking vertical levels from left to right:F
10 min read
Maximum width of a Binary Tree with null values | Set 2
Pre-requisite: Maximum width of a Binary Tree with null value | Set 1 Given a Binary Tree consisting of N nodes, the task is to find the maximum width of the given tree without using recursion, where the maximum width is defined as the maximum of all the widths at each level of the given Tree. Note:
8 min read
Vertical Traversal of a Binary Tree using BFS
Given a Binary Tree, the task is to find its vertical traversal starting from the leftmost level to the rightmost level. Note that if multiple nodes at same level pass through a vertical line, they should be printed as they appear in the level order traversal of the tree.Examples: Input:Output: [[4]
9 min read
Vertical Sum in Binary Tree (Space Optimized)
Given a Binary Tree, find the vertical sum of the nodes that are in the same vertical line.Input:Output: 4 2 12 11 7 9Explanation: The below image shows the horizontal distances used to print vertical traversal starting from the leftmost level to the rightmost level.Approach:We have discussed Hashin
10 min read
Left View of a Binary Tree
Given a Binary Tree, the task is to print the left view of the Binary Tree. The left view of a Binary Tree is a set of leftmost nodes for every level.Examples:Input: root[] = [1, 2, 3, 4, 5, N, N]Output: [1, 2, 4]Explanation: From the left side of the tree, only the nodes 1, 2, and 4 are visible.Inp
10 min read
Vertical Zig-Zag traversal of a Tree
Given a Binary Tree, the task is to print the elements in the Vertical Zig-Zag traversal order. Vertical Zig-Zag traversal of a tree is defined as: Print the elements of the first level in the order from right to left, if there are no elements left then skip to the next level.Print the elements of t
15 min read