What is Normalization in DBMS?
Last Updated :
23 Jul, 2025
The normalization concept for relational databases, developed by E.F. Codd, the inventor of the relational database model, is from the 1970s. Before Codd, the most common method of storing data was in large, cryptic, and unstructured files, generating plenty of redundancy and lack of consistency. When databases began to emerge, people noticed that stuffing data into them caused many duplications and anomalies to emerge, like insert, delete, and update anomalies. These anomalies could produce incorrect data reporting, which is harmful to any business. Normalization is a methodological method used in the design of databases to create a neat, structured, and structured table in which each table relates to just one subject or one-to-one correspondence.
The objective is to extensively reduce data redundancy and dependency. In essence, normalization was introduced and has continually been improved to rectify these specific aspects of data management. By organizing data in such a rigorous and stringent manner, normalization facilitates a significantly enhanced level of data integrity and enables more efficient data operations.
Understanding Normalization
DBMS normalization is referred to as a process to streamline database data correctly. This is because the redundancy, malfunctions, and integrity of the data are exceeded. In other words, normalization rearranges the database by splitting the tables to actually find the practical effects of the data management mixing up tables, any data will be lost.
Primary Terminologies
- Database Management System (DBMS): A DBMS is the single most important feature that allows a person to create, read, update and delete data from their database, providing them with much-needed access to the data they may need. As a centralized system, it boosts data sharing and access, making normalization core to managing structured data.
- Normalization: Normalization in DBMS Normalization is an essential part of your database in DBMS. It is the first intelligent design of the schema that organizes data systematically. In this case, data is essentially your foundation to an efficient, reliable, scalable and flexible database. What normalization basically does is ensure that your data is free of data redundancy or duplicate data and does not have data anomalies that would otherwise compromise its integrity.
- Tables (relations) and Attributes: A table, also known as a relation in DBMS, is an organized structure of rows and columns . A row represents a unique record while a column display an attribute. Attributes provide meaningful context to our data; they are essential characteristics or properties of the entities stored in our tables. Channeling these entities, the storage of the relational data may deem more efficient as it becomes easy to query relationships between these entities.
- Functional Dependencies:Functional dependencies are the most critical part of the relational database model. They are used for enforcing data integrity constraints and essential for database normalization. They provide logical and meaningful semantics between different attributes of a relation.
- Data Redundancy: This is a term that should be kept in check when using a DBMS. Redundant data is data that is repeating itself in a database. When data is redundant, storage space is misappropriated and the database becomes more complex to use. Redundant data contributes to numerous errors and inaccuracies in a database. It’s one of the drivers of a normal – free database.
- Data Anomalies: these are errors that are likely to occur during database transactions. Mismanagement of data can cause errors of different types such as insertion, ambiguity, and deletion. Normalized database systems cause the occur of errors in the sense that accuracies are now properly done.
- Primary Key: A Primary Key is a column predefined to serve as a unique identifier of a database table . Essentially, a primary key makes each record unique, allowing it to be addressed and manipulated independently. A primary key is a key component of a database structure because it is essential for maintaining data integrity and streamlining the operation of a database.
- Foreign Key: A foreign key is yet another essential database concept that links data tables and effectively solidifies the relational aspect of relational databases. In other words, a foreign key connects related entities and assures the integrity of database relationships. Overall, foreign keys contribute to the overall structure and coherence of a database by preventing redundant data. Hence, they make it easier to work with data and more meaningful.
- Normal Forms: Normal forms are a set of systematic rules for deciding what tables to build and when to create them. The standard normal forms that include 1NF, 2NF, 3NF, BCNF, 4NF, and 5NF are a sequence or list of progressive rules or standards made to remove redundancy and preserve database integrity. ‘NF’ deplores each of the aforementioned abbreviations indicates a more stringent normalization level. Normalization helps to keep relationships and layout consistency and efficiency of data information that goes into your database.
Types of Normalization
Normalization usually occurs in phases where every phase is assigned its equivalent ‘Normal form’. As we progress upwards the phases, the data gets more orderly and hence less permissible to redundancy, and more consistent. The commonly used normal forms include:
- First Normal Form (1NF): In the 1NF stage, each column in a table is unique, with no repetition of groups of data. Here, each entry (or tuple) has a unique identifier known as a primary key.
- Second Normal Form (2NF): Building upon 1NF, at this stage, all non-key attributes are fully functionally dependent on the primary key. In other words, the non-key columns in the table should rely entirely on each candidate key.
- Third Normal Form (3NF): This stage takes care of transitive functional dependencies. In the 3NF stage, every non-principal column should be non-transitively dependent on each key within the table.
- Boyce-Codd Normal Form (BCNF): BCNF is the next level of 3NF that guarantees the validity of data dependencies. The dependencies of any attributes on non-key attributes are removed under the third level of normalization . For that reason, it ensures that each determinant be a candidate key and no dependent can fail to possess an independent attribute as its candidate key.
- Fourth Normal Form (4NF): 4NF follows that data redundancy is reduced to another level with the treatment of multi-valued facts. Simply put, the table is in normal form when it does not result in any update anomalies and when a table consists of multiple attributes, each is independent. In other words, it collapses the dependencies into single vs. multi-valued and eliminates the root of any data redundancy concerned with the multi-valued one.
Why is Normalization Important?
Normalization is crucial as it helps eliminate redundant data and inconsistencies, ensuring more accurate, lean, and efficient databases. It also simplifies data management and enhances the speed and performance of the overall database system, thereby proving to be advantageous.
Example
Let us assume the library database that maintains the required details of books and borrowers. In an unnormalized database, the library records in one table the book details and the member who borrowed it, as well as the member’s detail. This would result in repetitive information every time a member borrows a book.
Normalization splits the data into different tables — ‘Books’, “Members” and “Borrowed” and connects “Books” and “Members” with “Borrowed” through a biunique key. This removes redundancy, which means data is well managed, and there is less space utilization.
Conclusion
The concepts of normalization, and the ability to put this theory into practice, are key to building and maintaining comprehensive databases which are both strong and impervious to data anomalies and redundancy. Properly applied and employed at the right times, normalization boosts database quality, making it structured, small, and easily manageable.
Similar Reads
DBMS Tutorial â Learn Database Management System Database Management System (DBMS) is a software used to manage data from a database. A database is a structured collection of data that is stored in an electronic device. The data can be text, video, image or any other format.A relational database stores data in the form of tables and a NoSQL databa
7 min read
Basic of DBMS
Entity Relationship Model
Introduction of ER ModelThe Entity-Relationship Model (ER Model) is a conceptual model for designing a databases. This model represents the logical structure of a database, including entities, their attributes and relationships between them. Entity: An objects that is stored as data such as Student, Course or Company.Attri
10 min read
Structural Constraints of Relationships in ER ModelStructural constraints, within the context of Entity-Relationship (ER) modeling, specify and determine how the entities take part in the relationships and this gives an outline of how the interactions between the entities can be designed in a database. Two primary types of constraints are cardinalit
5 min read
Generalization, Specialization and Aggregation in ER ModelUsing the ER model for bigger data creates a lot of complexity while designing a database model, So in order to minimize the complexity Generalization, Specialization and Aggregation were introduced in the ER model. These were used for data abstraction. In which an abstraction mechanism is used to h
4 min read
Introduction of Relational Model and Codd Rules in DBMSThe Relational Model is a fundamental concept in Database Management Systems (DBMS) that organizes data into tables, also known as relations. This model simplifies data storage, retrieval, and management by using rows and columns. Coddâs Rules, introduced by Dr. Edgar F. Codd, define the principles
14 min read
Keys in Relational ModelIn the context of a relational database, keys are one of the basic requirements of a relational database model. Keys are fundamental components that ensure data integrity, uniqueness and efficient access. It is widely used to identify the tuples(rows) uniquely in the table. We also use keys to set u
6 min read
Mapping from ER Model to Relational ModelConverting an Entity-Relationship (ER) diagram to a Relational Model is a crucial step in database design. The ER model represents the conceptual structure of a database, while the Relational Model is a physical representation that can be directly implemented using a Relational Database Management S
7 min read
Strategies for Schema design in DBMSThere are various strategies that are considered while designing a schema. Most of these strategies follow an incremental approach that is, they must start with some schema constructs derived from the requirements and then they incrementally modify, refine or build on them. What is Schema Design?Sch
6 min read
Relational Model
Introduction of Relational Algebra in DBMSRelational Algebra is a formal language used to query and manipulate relational databases, consisting of a set of operations like selection, projection, union, and join. It provides a mathematical framework for querying databases, ensuring efficient data retrieval and manipulation. Relational algebr
9 min read
SQL Joins (Inner, Left, Right and Full Join)SQL joins are fundamental tools for combining data from multiple tables in relational databases. For example, consider two tables where one table (say Student) has student information with id as a key and other table (say Marks) has information about marks of every student id. Now to display the mar
4 min read
Join operation Vs Nested query in DBMSThe concept of joins and nested queries emerged to facilitate the retrieval and management of data stored in multiple, often interrelated tables within a relational database. As databases are normalized to reduce redundancy, the meaningful information extracted often requires combining data from dif
3 min read
Tuple Relational Calculus (TRC) in DBMSTuple Relational Calculus (TRC) is a non-procedural query language used to retrieve data from relational databases by describing the properties of the required data (not how to fetch it). It is based on first-order predicate logic and uses tuple variables to represent rows of tables.Syntax: The basi
4 min read
Domain Relational Calculus in DBMSDomain Relational Calculus (DRC) is a formal query language for relational databases. It describes queries by specifying a set of conditions or formulas that the data must satisfy. These conditions are written using domain variables and predicates, and it returns a relation that satisfies the specif
4 min read
Relational Algebra
Introduction of Relational Algebra in DBMSRelational Algebra is a formal language used to query and manipulate relational databases, consisting of a set of operations like selection, projection, union, and join. It provides a mathematical framework for querying databases, ensuring efficient data retrieval and manipulation. Relational algebr
9 min read
SQL Joins (Inner, Left, Right and Full Join)SQL joins are fundamental tools for combining data from multiple tables in relational databases. For example, consider two tables where one table (say Student) has student information with id as a key and other table (say Marks) has information about marks of every student id. Now to display the mar
4 min read
Join operation Vs Nested query in DBMSThe concept of joins and nested queries emerged to facilitate the retrieval and management of data stored in multiple, often interrelated tables within a relational database. As databases are normalized to reduce redundancy, the meaningful information extracted often requires combining data from dif
3 min read
Tuple Relational Calculus (TRC) in DBMSTuple Relational Calculus (TRC) is a non-procedural query language used to retrieve data from relational databases by describing the properties of the required data (not how to fetch it). It is based on first-order predicate logic and uses tuple variables to represent rows of tables.Syntax: The basi
4 min read
Domain Relational Calculus in DBMSDomain Relational Calculus (DRC) is a formal query language for relational databases. It describes queries by specifying a set of conditions or formulas that the data must satisfy. These conditions are written using domain variables and predicates, and it returns a relation that satisfies the specif
4 min read
Functional Dependencies & Normalization
Attribute Closure in DBMSFunctional dependency and attribute closure are essential for maintaining data integrity and building effective, organized and normalized databases. Attribute closure of an attribute set can be defined as set of attributes which can be functionally determined from it.How to find attribute closure of
4 min read
Armstrong's Axioms in Functional Dependency in DBMSArmstrong's Axioms refer to a set of inference rules, introduced by William W. Armstrong, that are used to test the logical implication of functional dependencies. Given a set of functional dependencies F, the closure of F (denoted as F+) is the set of all functional dependencies logically implied b
4 min read
Canonical Cover of Functional Dependencies in DBMSManaging a large set of functional dependencies can result in unnecessary computational overhead. This is where the canonical cover becomes useful. A canonical cover is a set of functional dependencies that is equivalent to a given set of functional dependencies but is minimal in terms of the number
7 min read
Normal Forms in DBMSIn the world of database management, Normal Forms are important for ensuring that data is structured logically, reducing redundancy, and maintaining data integrity. When working with databases, especially relational databases, it is critical to follow normalization techniques that help to eliminate
7 min read
The Problem of Redundancy in DatabaseRedundancy means having multiple copies of the same data in the database. This problem arises when a database is not normalized. Suppose a table of student details attributes is: student ID, student name, college name, college rank, and course opted. Student_ID Name Contact College Course Rank 100Hi
6 min read
Lossless Join and Dependency Preserving DecompositionDecomposition of a relation is done when a relation in a relational model is not in appropriate normal form. Relation R is decomposed into two or more relations if decomposition is lossless join as well as dependency preserving. Lossless Join DecompositionIf we decompose a relation R into relations
4 min read
Denormalization in DatabasesDenormalization is a database optimization technique in which we add redundant data to one or more tables. This can help us avoid costly joins in a relational database. Note that denormalization does not mean 'reversing normalization' or 'not to normalize'. It is an optimization technique that is ap
4 min read
Transactions & Concurrency Control
ACID Properties in DBMSTransactions are fundamental operations that allow us to modify and retrieve data. However, to ensure the integrity of a database, it is important that these transactions are executed in a way that maintains consistency, correctness, and reliability. This is where the ACID properties come into play.
6 min read
Types of Schedules in DBMSScheduling is the process of determining the order in which transactions are executed. When multiple transactions run concurrently, scheduling ensures that operations are executed in a way that prevents conflicts or overlaps between them.There are several types of schedules, all of them are depicted
6 min read
Recoverability in DBMSRecoverability ensures that after a failure, the database can restore a consistent state by keeping committed changes and undoing uncommitted ones. It uses logs to redo or undo actions, preventing data loss and maintaining integrity.There are several levels of recoverability that can be supported by
5 min read
Implementation of Locking in DBMSLocking protocols are used in database management systems as a means of concurrency control. Multiple transactions may request a lock on a data item simultaneously. Hence, we require a mechanism to manage the locking requests made by transactions. Such a mechanism is called a Lock Manager. It relies
5 min read
Deadlock in DBMSA deadlock occurs in a multi-user database environment when two or more transactions block each other indefinitely by each holding a resource the other needs. This results in a cycle of dependencies (circular wait) where no transaction can proceed.For Example: Consider the image belowDeadlock in DBM
4 min read
Starvation in DBMSStarvation in DBMS is a problem that happens when some processes are unable to get the resources they need because other processes keep getting priority. This can happen in situations like locking or scheduling, where some processes keep getting the resources first, leaving others waiting indefinite
8 min read
Advanced DBMS
Indexing in DatabasesIndexing in DBMS is used to speed up data retrieval by minimizing disk scans. Instead of searching through all rows, the DBMS uses index structures to quickly locate data using key values.When an index is created, it stores sorted key values and pointers to actual data rows. This reduces the number
6 min read
Introduction of B TreeA B-Tree is a specialized m-way tree designed to optimize data access, especially on disk-based storage systems. In a B-Tree of order m, each node can have up to m children and m-1 keys, allowing it to efficiently manage large datasets.The value of m is decided based on disk block and key sizes.One
8 min read
Introduction of B+ TreeA B+ Tree is an advanced data structure used in database systems and file systems to maintain sorted data for fast retrieval, especially from disk. It is an extended version of the B Tree, where all actual data is stored only in the leaf nodes, while internal nodes contain only keys for navigation.C
5 min read
Bitmap Indexing in DBMSBitmap Indexing is a powerful data indexing technique used in Database Management Systems (DBMS) to speed up queries- especially those involving large datasets and columns with only a few unique values (called low-cardinality columns).In a database table, some columns only contain a few different va
3 min read
Inverted IndexAn Inverted Index is a data structure used in information retrieval systems to efficiently retrieve documents or web pages containing a specific term or set of terms. In an inverted index, the index is organized by terms (words), and each term points to a list of documents or web pages that contain
7 min read
SQL Queries on Clustered and Non-Clustered IndexesIndexes in SQL play a pivotal role in enhancing database performance by enabling efficient data retrieval without scanning the entire table. The two primary types of indexes Clustered Index and Non-Clustered Index serve distinct purposes in optimizing query performance. In this article, we will expl
7 min read
File Organization in DBMSFile organization in DBMS refers to the method of storing data records in a file so they can be accessed efficiently. It determines how data is arranged, stored, and retrieved from physical storage.The Objective of File OrganizationIt helps in the faster selection of records i.e. it makes the proces
5 min read
DBMS Practice