Web scraping from Wikipedia using Python - A Complete Guide
Last Updated :
09 Jan, 2023
In this article, you will learn various concepts of web scraping and get comfortable with scraping various types of websites and their data. The goal is to scrape data from the Wikipedia Home page and parse it through various web scraping techniques. You will be getting familiar with various web scraping techniques, python modules for web scraping, and processes of Data extraction and data processing. Web scraping is an automatic process of extracting information from the web. This article will give you an in-depth idea of web scraping, its comparison with web crawling, and why you should opt for web scraping.
Introduction to Web scraping and Python
It is basically a technique or a process in which large amounts of data from a huge number of websites is passed through a web scraping software coded in a programming language and as a result, structured data is extracted which can be saved locally in our devices preferably in Excel sheets, JSON or spreadsheets. Now, we don't have to manually copy and paste data from websites but a scraper can perform that task for us in a couple of seconds.
Web scraping is also known as Screen Scraping, Web Data Extraction, Web Harvesting, etc.
Process of Web scraping
This helps programmers write clear, logical code for small and large-scale projects. Python is mostly known as the best web scraper language. It's more like an all-rounder and can handle most of the web crawling related processes smoothly. Scrapy and Beautiful Soup are among the widely used frameworks based on Python that makes scraping using this language such an easy route to take.
A brief list of Python libraries used for web scraping
Let’s see the web scraping libraries in Python!
- Requests (HTTP for Humans) Library for Web Scraping - It is used for making various types of HTTP requests like GET, POST, etc. It is the most basic yet the most essential of all libraries.
- lxml Library for Web Scraping - lxml library provides super-fast and high-performance parsing of HTML and XML content from websites. If you are planning to scrape large datasets, this is the one you should go for.
- Beautiful Soup Library for Web Scraping - Its work involves creating a parse tree for parsing content. A perfect starting library for beginners and very easy to work with.
- Selenium Library for Web Scraping - Originally made for automated testing of web applications, this library overcomes the issue all the above libraries face i.e. scraping content from dynamically populated websites. This makes it slower and not suitable for industry-level projects.
- Scrapy for Web Scraping - The BOSS of all libraries, an entire web scraping framework which is asynchronous in its usage. This makes it blazing fast and increases efficiency.
Practical Implementation - Scraping Wikipedia
Steps of web scrapingStep 1: How to use python for web scraping?
- We need python IDE and should be familiar with the use of it.
- Virtualenv is a tool to create isolated Python environments. With the help of virtualenv, we can create a folder that contains all necessary executables to use the packages that our Python project requires. Here we can add and modify python modules without affecting any global installation.
- We need to install various Python modules and libraries using the pip command for our purpose. But, we should always keep in mind that whether the website we are scraping is legal or not.
Requirements:
- Requests: It is an efficient HTTP library used for accessing web pages.
- Urlib3: It is used for retrieving data from URLs.
- Selenium: It is an open-source automated testing suite for web applications across different browsers and platforms.
Installation:
pip install virtualenv
python -m pip install selenium
python -m pip install requests
python -m pip install urllib3
Sample image during installingStep 2: Introduction to Requests library
- Here, we will learn various python modules to fetch data from the web.
- The python requests library is used to make download the webpage we are trying to scrape.
Requirements:
- Python IDE
- Python Modules
- Requests library
Code Walk-Through:
URL: https://en.wikipedia.org/wiki/Main_Page
Python3
# import required modules
import requests
# get URL
page = requests.get("https://en.wikipedia.org/wiki/Main_Page")
# display status code
print(page.status_code)
# display scraped data
print(page.content)
Output:

The first thing we’ll need to do to scrape a web page is to download the page. We can download pages using the Python requests library. The requests library will make a GET request to a web server, which will download the HTML contents of a given web page for us. There are several types of requests we can make using requests, of which GET is just one. The URL of our sample website is https://en.wikipedia.org/wiki/Main_Page. The task is to download it using requests.get() method. After running our request, we get a Response object. This object has a status_code property, which indicates if the page was downloaded successfully. And a content property that gives the HTML content of the webpage as output.
Step 3: Introduction to Beautiful Soup for page parsing
We have a lot of python modules for data extraction. We are going to use BeautifulSoup for our purpose.
- BeautifulSoup is a Python library for pulling data out of HTML and XML files.
- It needs an input (document or URL) to create a soup object as it cannot fetch a web page by itself.
- We have other modules such as regular expression, lxml for the same purpose.
- We then process the data in CSV or JSON or MySQL format.
Requirements:
- PythonIDE
- Python Modules
- Beautiful Soup library
pip install bs4
Code Walk-Through:
Python3
# import required modules
from bs4 import BeautifulSoup
import requests
# get URL
page = requests.get("https://en.wikipedia.org/wiki/Main_Page")
# scrape webpage
soup = BeautifulSoup(page.content, 'html.parser')
# display scraped data
print(soup.prettify())
Output:

As you can see above, we now have downloaded an HTML document. We can use the BeautifulSoup library to parse this document and extract the text from the p tag. We first have to import the library and create an instance of the BeautifulSoup class to parse our document. We can now print out the HTML content of the page, formatted nicely, using the prettify method on the BeautifulSoup object. As all the tags are nested, we can move through the structure one level at a time. We can first select all the elements at the top level of the page using the children's property of soup. Note that children return a list generator, so we need to call the list function on it.
Step 4: Digging deep into Beautiful Soup further
Three features that make Beautiful Soup so powerful:
- Beautiful Soup provides a few simple methods and Pythonic idioms for navigating, searching, and modifying a parse tree: a toolkit for dissecting a document and extracting what you need. It doesn't take much code to write an application
- Beautiful Soup automatically converts incoming documents to Unicode and outgoing documents to UTF-8. You don't have to think about encodings unless the document doesn't specify an encoding and Beautiful Soup can't detect one. Then you just have to specify the original encoding.
- Beautiful Soup sits on top of popular Python parsers like lxml and html5lib, allowing you to try out different parsing strategies or trade speed for flexibility. Then we have to just process our data in a proper format such as CSV or JSON or MySQL.
Requirements:
- PythonIDE
- Python Modules
- Beautiful Soup library
Code Walk-Through:
Python3
# import required modules
from bs4 import BeautifulSoup
import requests
# get URL
page = requests.get("https://en.wikipedia.org/wiki/Main_Page")
# scrape webpage
soup = BeautifulSoup(page.content, 'html.parser')
list(soup.children)
# find all occurrence of p in HTML
# includes HTML tags
print(soup.find_all('p'))
print('\n\n')
# return only text
# does not include HTML tags
print(soup.find_all('p')[0].get_text())
Output:

What we did above was useful for figuring out how to navigate a page, but it took a lot of commands to do something fairly simple. If we want to extract a single tag, we can instead use the find_all() method, which will find all the instances of a tag on a page. Note that find_all() returns a list, so we’ll have to loop through, or use list indexing, to extract text. If you instead only want to find the first instance of a tag, you can use the find method, which will return a single BeautifulSoup object.
Step 5: Exploring page structure with Chrome Dev tools and extracting information
The first thing we’ll need to do is inspect the page using Chrome Devtools. If you’re using another browser, Firefox and Safari have equivalents. It’s recommended to use Chrome though.
You can start the developer tools in Chrome by clicking View -> Developer -> Developer Tools. You should end up with a panel at the bottom of the browser like what you see below. Make sure the Elements panel is highlighted. The elements panel will show you all the HTML tags on the page, and let you navigate through them. It’s a really handy feature! By right-clicking on the page near where it says Extended Forecast, then clicking Inspect, we’ll open up the tag that contains the text Extended Forecast in the elements panel.
Analyzing by Chrome Dev tools
Code Walk-Through:
Python3
# import required modules
from bs4 import BeautifulSoup
import requests
# get URL
page = requests.get("https://en.wikipedia.org/wiki/Main_Page")
# scrape webpage
soup = BeautifulSoup(page.content, 'html.parser')
# create object
object = soup.find(id="mp-left")
# find tags
items = object.find_all(class_="mp-h2")
result = items[0]
# display tags
print(result.prettify())
Output:

Here we have to select that element that has an id to it and contains children having the same class. For example, the element with id mp-left is the parent element and its nested children have the class mp-h2. So we will print the information with the first nested child and prettify it using the prettify() function.
Conclusion and Digging deeper into Web scraping
We learned various concepts of web scraping and scraped data from the Wikipedia Home page and parsed it through various web scraping techniques. The article helped us in getting an in-depth idea of web scraping, its comparison with web crawling, and why you should opt for web scraping. We also learned about the components and working of a web scraper.
Although web scraping opens up many doors for ethical purposes, there can be unintended data scraping by unethical practitioners which creates a moral hazard to many companies and organizations where they can retrieve the data easily and use it for their own selfish means. Data-scraping in combination with big data can provide the company’s market intelligence and help them identify critical trends and patterns and identify the best opportunities and solutions. Therefore, it's quite accurate to predict that Data scraping can be upgraded to the better soon.
Uses of Web scraping
Similar Reads
Python Tutorial - Learn Python Programming Language Python is one of the most popular programming languages. Itâs simple to use, packed with features and supported by a wide range of libraries and frameworks. Its clean syntax makes it beginner-friendly. It'sA high-level language, used in web development, data science, automation, AI and more.Known fo
10 min read
Python Fundamentals
Python IntroductionPython was created by Guido van Rossum in 1991 and further developed by the Python Software Foundation. It was designed with focus on code readability and its syntax allows us to express concepts in fewer lines of code.Key Features of PythonPythonâs simple and readable syntax makes it beginner-frien
3 min read
Input and Output in PythonUnderstanding input and output operations is fundamental to Python programming. With the print() function, we can display output in various formats, while the input() function enables interaction with users by gathering input during program execution. Taking input in PythonPython's input() function
7 min read
Python VariablesIn Python, variables are used to store data that can be referenced and manipulated during program execution. A variable is essentially a name that is assigned to a value. Unlike many other programming languages, Python variables do not require explicit declaration of type. The type of the variable i
6 min read
Python OperatorsIn Python programming, Operators in general are used to perform operations on values and variables. These are standard symbols used for logical and arithmetic operations. In this article, we will look into different types of Python operators. OPERATORS: These are the special symbols. Eg- + , * , /,
6 min read
Python KeywordsKeywords in Python are reserved words that have special meanings and serve specific purposes in the language syntax. Python keywords cannot be used as the names of variables, functions, and classes or any other identifier. Getting List of all Python keywordsWe can also get all the keyword names usin
2 min read
Python Data TypesPython Data types are the classification or categorization of data items. It represents the kind of value that tells what operations can be performed on a particular data. Since everything is an object in Python programming, Python data types are classes and variables are instances (objects) of thes
9 min read
Conditional Statements in PythonConditional statements in Python are used to execute certain blocks of code based on specific conditions. These statements help control the flow of a program, making it behave differently in different situations.If Conditional Statement in PythonIf statement is the simplest form of a conditional sta
6 min read
Loops in Python - For, While and Nested LoopsLoops in Python are used to repeat actions efficiently. The main types are For loops (counting through items) and While loops (based on conditions). In this article, we will look at Python loops and understand their working with the help of examples. For Loop in PythonFor loops is used to iterate ov
9 min read
Python FunctionsPython Functions is a block of statements that does a specific task. The idea is to put some commonly or repeatedly done task together and make a function so that instead of writing the same code again and again for different inputs, we can do the function calls to reuse code contained in it over an
9 min read
Recursion in PythonRecursion involves a function calling itself directly or indirectly to solve a problem by breaking it down into simpler and more manageable parts. In Python, recursion is widely used for tasks that can be divided into identical subtasks.In Python, a recursive function is defined like any other funct
6 min read
Python Lambda FunctionsPython Lambda Functions are anonymous functions means that the function is without a name. As we already know the def keyword is used to define a normal function in Python. Similarly, the lambda keyword is used to define an anonymous function in Python. In the example, we defined a lambda function(u
6 min read
Python Data Structures
Python StringA string is a sequence of characters. Python treats anything inside quotes as a string. This includes letters, numbers, and symbols. Python has no character data type so single character is a string of length 1.Pythons = "GfG" print(s[1]) # access 2nd char s1 = s + s[0] # update print(s1) # printOut
6 min read
Python ListsIn Python, a list is a built-in dynamic sized array (automatically grows and shrinks). We can store all types of items (including another list) in a list. A list may contain mixed type of items, this is possible because a list mainly stores references at contiguous locations and actual items maybe s
6 min read
Python TuplesA tuple in Python is an immutable ordered collection of elements. Tuples are similar to lists, but unlike lists, they cannot be changed after their creation (i.e., they are immutable). Tuples can hold elements of different data types. The main characteristics of tuples are being ordered , heterogene
6 min read
Dictionaries in PythonPython dictionary is a data structure that stores the value in key: value pairs. Values in a dictionary can be of any data type and can be duplicated, whereas keys can't be repeated and must be immutable. Example: Here, The data is stored in key:value pairs in dictionaries, which makes it easier to
7 min read
Python SetsPython set is an unordered collection of multiple items having different datatypes. In Python, sets are mutable, unindexed and do not contain duplicates. The order of elements in a set is not preserved and can change.Creating a Set in PythonIn Python, the most basic and efficient method for creating
10 min read
Python ArraysLists in Python are the most flexible and commonly used data structure for sequential storage. They are similar to arrays in other languages but with several key differences:Dynamic Typing: Python lists can hold elements of different types in the same list. We can have an integer, a string and even
9 min read
List Comprehension in PythonList comprehension is a way to create lists using a concise syntax. It allows us to generate a new list by applying an expression to each item in an existing iterable (such as a list or range). This helps us to write cleaner, more readable code compared to traditional looping techniques.For example,
4 min read
Advanced Python
Python OOPs ConceptsObject Oriented Programming is a fundamental concept in Python, empowering developers to build modular, maintainable, and scalable applications. OOPs is a way of organizing code that uses objects and classes to represent real-world entities and their behavior. In OOPs, object has attributes thing th
11 min read
Python Exception HandlingPython Exception Handling handles errors that occur during the execution of a program. Exception handling allows to respond to the error, instead of crashing the running program. It enables you to catch and manage errors, making your code more robust and user-friendly. Let's look at an example:Handl
6 min read
File Handling in PythonFile handling refers to the process of performing operations on a file, such as creating, opening, reading, writing and closing it through a programming interface. It involves managing the data flow between the program and the file system on the storage device, ensuring that data is handled safely a
4 min read
Python Database TutorialPython being a high-level language provides support for various databases. We can connect and run queries for a particular database using Python and without writing raw queries in the terminal or shell of that particular database, we just need to have that database installed in our system.A database
4 min read
Python MongoDB TutorialMongoDB is a popular NoSQL database designed to store and manage data flexibly and at scale. Unlike traditional relational databases that use tables and rows, MongoDB stores data as JSON-like documents using a format called BSON (Binary JSON). This document-oriented model makes it easy to handle com
2 min read
Python MySQLMySQL is a widely used open-source relational database for managing structured data. Integrating it with Python enables efficient data storage, retrieval and manipulation within applications. To work with MySQL in Python, we use MySQL Connector, a driver that enables seamless integration between the
9 min read
Python PackagesPython packages are a way to organize and structure code by grouping related modules into directories. A package is essentially a folder that contains an __init__.py file and one or more Python files (modules). This organization helps manage and reuse code effectively, especially in larger projects.
12 min read
Python ModulesPython Module is a file that contains built-in functions, classes,its and variables. There are many Python modules, each with its specific work.In this article, we will cover all about Python modules, such as How to create our own simple module, Import Python modules, From statements in Python, we c
7 min read
Python DSA LibrariesData Structures and Algorithms (DSA) serve as the backbone for efficient problem-solving and software development. Python, known for its simplicity and versatility, offers a plethora of libraries and packages that facilitate the implementation of various DSA concepts. In this article, we'll delve in
15 min read
List of Python GUI Library and PackagesGraphical User Interfaces (GUIs) play a pivotal role in enhancing user interaction and experience. Python, known for its simplicity and versatility, has evolved into a prominent choice for building GUI applications. With the advent of Python 3, developers have been equipped with lots of tools and li
11 min read
Data Science with Python
NumPy Tutorial - Python LibraryNumPy (short for Numerical Python ) is one of the most fundamental libraries in Python for scientific computing. It provides support for large, multi-dimensional arrays and matrices along with a collection of mathematical functions to operate on arrays.At its core it introduces the ndarray (n-dimens
3 min read
Pandas TutorialPandas is an open-source software library designed for data manipulation and analysis. It provides data structures like series and DataFrames to easily clean, transform and analyze large datasets and integrates with other Python libraries, such as NumPy and Matplotlib. It offers functions for data t
6 min read
Matplotlib TutorialMatplotlib is an open-source visualization library for the Python programming language, widely used for creating static, animated and interactive plots. It provides an object-oriented API for embedding plots into applications using general-purpose GUI toolkits like Tkinter, Qt, GTK and wxPython. It
5 min read
Python Seaborn TutorialSeaborn is a library mostly used for statistical plotting in Python. It is built on top of Matplotlib and provides beautiful default styles and color palettes to make statistical plots more attractive.In this tutorial, we will learn about Python Seaborn from basics to advance using a huge dataset of
15+ min read
StatsModel Library- TutorialStatsmodels is a useful Python library for doing statistics and hypothesis testing. It provides tools for fitting various statistical models, performing tests and analyzing data. It is especially used for tasks in data science ,economics and other fields where understanding data is important. It is
4 min read
Learning Model Building in Scikit-learnBuilding machine learning models from scratch can be complex and time-consuming. Scikit-learn which is an open-source Python library which helps in making machine learning more accessible. It provides a straightforward, consistent interface for a variety of tasks like classification, regression, clu
8 min read
TensorFlow TutorialTensorFlow is an open-source machine-learning framework developed by Google. It is written in Python, making it accessible and easy to understand. It is designed to build and train machine learning (ML) and deep learning models. It is highly scalable for both research and production.It supports CPUs
2 min read
PyTorch TutorialPyTorch is an open-source deep learning framework designed to simplify the process of building neural networks and machine learning models. With its dynamic computation graph, PyTorch allows developers to modify the networkâs behavior in real-time, making it an excellent choice for both beginners an
7 min read
Web Development with Python
Flask TutorialFlask is a lightweight and powerful web framework for Python. Itâs often called a "micro-framework" because it provides the essentials for web development without unnecessary complexity. Unlike Django, which comes with built-in features like authentication and an admin panel, Flask keeps things mini
8 min read
Django Tutorial | Learn Django FrameworkDjango is a Python framework that simplifies web development by handling complex tasks for you. It follows the "Don't Repeat Yourself" (DRY) principle, promoting reusable components and making development faster. With built-in features like user authentication, database connections, and CRUD operati
10 min read
Django ORM - Inserting, Updating & Deleting DataDjango's Object-Relational Mapping (ORM) is one of the key features that simplifies interaction with the database. It allows developers to define their database schema in Python classes and manage data without writing raw SQL queries. The Django ORM bridges the gap between Python objects and databas
4 min read
Templating With Jinja2 in FlaskFlask is a lightweight WSGI framework that is built on Python programming. WSGI simply means Web Server Gateway Interface. Flask is widely used as a backend to develop a fully-fledged Website. And to make a sure website, templating is very important. Flask is supported by inbuilt template support na
6 min read
Django TemplatesTemplates are the third and most important part of Django's MVT Structure. A Django template is basically an HTML file that can also include CSS and JavaScript. The Django framework uses these templates to dynamically generate web pages that users interact with. Since Django primarily handles the ba
7 min read
Python | Build a REST API using FlaskPrerequisite: Introduction to Rest API REST stands for REpresentational State Transfer and is an architectural style used in modern web development. It defines a set or rules/constraints for a web application to send and receive data. In this article, we will build a REST API in Python using the Fla
3 min read
How to Create a basic API using Django Rest Framework ?Django REST Framework (DRF) is a powerful extension of Django that helps you build APIs quickly and easily. It simplifies exposing your Django models as RESTfulAPIs, which can be consumed by frontend apps, mobile clients or other services.Before creating an API, there are three main steps to underst
4 min read
Python Practice
Python QuizThese Python quiz questions are designed to help you become more familiar with Python and test your knowledge across various topics. From Python basics to advanced concepts, these topic-specific quizzes offer a comprehensive way to practice and assess your understanding of Python concepts. These Pyt
3 min read
Python Coding Practice ProblemsThis collection of Python coding practice problems is designed to help you improve your overall programming skills in Python.The links below lead to different topic pages, each containing coding problems, and this page also includes links to quizzes. You need to log in first to write your code. Your
1 min read
Python Interview Questions and AnswersPython is the most used language in top companies such as Intel, IBM, NASA, Pixar, Netflix, Facebook, JP Morgan Chase, Spotify and many more because of its simplicity and powerful libraries. To crack their Online Assessment and Interview Rounds as a Python developer, we need to master important Pyth
15+ min read