Understanding Character Encoding
Last Updated :
01 May, 2024
Ever imagined how a computer is able to understand and display what you have written? Ever wondered what a UTF-8 or UTF-16 meant when you were going through some configurations? Just think about how "HeLLo WorlD" should be interpreted by a computer. We all know that a computer stores data in bits and bytes. So, to display a character on screen or map the character as a byte in memory of the computer needs to have a standard. Read the following :
\x48\x65\x4C\x4C\x6F\x20\x57\x6F\x72\x6C\x44
This is something a memory would show you. How do you know what character each memory byte specifies?
Here comes character encoding into the picture:
If you have already not guessed it - Its "HeLLo WorlD" in UTF-8 for you. And yes, we will go ahead and read about UTF-8. But let's start with ASCII. Most of you who have done programming or worked with strings must have known what ASCII is. If you haven't then let’s define what ASCII is.
ASCII:
ASCII stands for American Standard Code for Information Interchange. Computers can only understand numbers, so an ASCII code is the numerical representation of a character such as 'a' or '@' or an action of some sort. ASCII was developed a long time ago and now the non-printing characters are rarely used for their original purpose.
Just look at the following -
Hexadecimal | Decimal | Character |
---|
\x48 | 72 | H |
\x65 | 101 | e |
\x4c | 76 | L |
And so on. You can look at the ASCII table and mapping at https://www.asciitable.com/. If you have not already looked at the table, I will recommend that you do it now! You will observe that these are a simple set of English words and punctuations.
Now Suppose I want to write the below characters:
A B?@
This will be interpreted by my decoder as
0x410x0a0x200x420x3f0x40
in hex and
065010032066063064
in decimal, where even a space (0x20) and a next line (0x0a) has a byte value or a memory space.
Different countries, languages but the need that brought them together
Today internet has made the world come close together. And the people all over the world do not speak just English, right? There came a need to expand this space. If you have created an application and you see that people in France want to use it as you see a high potential there. Wouldn't it be nice to just have a change in language but having the same functionality?
Why not create a Universal Code in short Unicode for everyone ??
So, here came the Unicode with a really good idea. It assigned every character, including different languages, a unique number called Code Point. One advantage of Unicode over other possible sets is that its first 256 code points are identical to ASCII. So for a software/browser it is easier to encode and decode characters of majority of living languages in use on computers. It aims to be, and to a large extent already is, a superset of all other character sets that have been encoded. Unicode also is a character set (not an encoding). It uses the same characters like the ASCII standard, but it extends the list with additional characters, which gives each character a Code point. It has the ambition to contain all characters (and popular icons) used in the entire world.
Before knowing these let us get a few terminologies straight:
- A character is a minimal unit of text that has semantic value.
- A character set is a collection of characters that might be used by multiple languages. Example: The Latin character set is used by English and most European languages, though the Greek character set is used only by the Greek language.
- A coded character set is a character set in which each character corresponds to a unique number.
- A code point of a coded character set is any legal value in the character set.
- A code unit is a bit sequence used to encode each character of a repertoire within a given encoding form.
Ever wondered what is UTF-8 or UTF-16??
UTF-8:
UTF-8 has truly been the dominant character encoding for the World Wide Web since 2009, and as of June 2017 accounts for 89.4% of all Web pages. UTF-8 encodes each of the 1,112,064 valid code points in Unicode using one to four 8-bit bytes. Code points with lower numerical values, which tend to occur more frequently, are encoded using fewer bytes. The first 128 characters of Unicode, which correspond one-to-one with ASCII, are encoded using a single octet with the same binary value as ASCII, so that valid ASCII text is valid UTF-8-encoded Unicode as well. So how many bytes give access to what characters in these encodings?
UTF-8:
1 byte: Standard ASCII 2 bytes: Arabic, Hebrew, most European scripts (most notably excluding Georgian) 3 bytes: BMP 4 bytes: All Unicode characters
UTF-16:
2 bytes: BMP 4 bytes: All Unicode characters
So I did make a mention about BMP. What is it exactly?
Basic Multilingual Plane (BMP) contains characters for almost all modern languages, and a large number of symbols. A primary objective for the BMP is to support the unification of prior character sets as well as characters for writing. UTF-8, UTF-16 and UTF-32 are encodings that apply the Unicode character table. But they each have a slightly different way on how to encode them. UTF-8 will only use 1 byte when encoding an ASCII character, giving the same output as any other ASCII encoding. But for other characters, it will use the first bit to indicate that a 2nd byte will follow. UTF-16 uses 16-bit by default, but that only gives you 65k possible characters, which is nowhere near enough for the full Unicode set. So some characters use pairs of 16-bit values. UTF-32 is opposite, it uses the most memory (each character is a fixed 4 bytes wide), which makes it quite bloated but now in this scenario every character has this precise length, so string manipulation becomes far simpler. You can compute the number of characters in a string simply from the length in bytes of the string. You can't do that with UTF-8.This is how it eases to accommodate the entire character set for different languages and help people spread their applications or information to the world just coding/writing in their language rest all is taken care by the Decoder. As this being just the beginning into the world of Character Encoding. I hope this helps you understand Character encoding at a higher level.
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem