import tensorflow as tf
import numpy as np
# Encoder-Decoder RNN for sequence-to-sequence translation
def build_seq2seq_rnn(input_len, output_len, in_vocab, out_vocab, units=256):
encoder_input = tf.keras.Input(shape=(input_len, in_vocab))
_, state = tf.keras.layers.SimpleRNN(units, return_state=True)(encoder_input)
decoder_input = tf.keras.Input(shape=(output_len, out_vocab))
decoder_output, _ = tf.keras.layers.SimpleRNN(units, return_sequences=True, return_state=True)(decoder_input, initial_state=state)
output = tf.keras.layers.Dense(out_vocab, activation='softmax')(decoder_output)
model = tf.keras.Model([encoder_input, decoder_input], output)
model.compile(optimizer='adam', loss='categorical_crossentropy')
return model
# Setup for translation
in_vocab, out_vocab = 10000, 12000
input_len, output_len = 50, 60
model = build_seq2seq_rnn(input_len, output_len, in_vocab, out_vocab)
# Simulated training data
X_enc = np.random.rand(1000, input_len, in_vocab)
X_dec = np.random.rand(1000, output_len, out_vocab)
y_dec = np.random.rand(1000, output_len, out_vocab)
model.fit([X_enc, X_dec], y_dec, epochs=5, batch_size=64, verbose=0)