Three-dimensional Plotting in Python using Matplotlib
Visualizing data involving three variables often requires three-dimensional plotting to better understand complex relationships and patterns that two-dimensional plots cannot reveal. Python’s Matplotlib library, through its mpl_toolkits.mplot3d toolkit, provides powerful support for 3D visualizations. To begin creating 3D plots, the first essential step is to set up a 3D plotting environment by enabling 3D projection on the plot axes. For example:
import matplotlib.pyplot as plt
fig = plt.figure()
ax = plt.axes(projection='3d')
plt.show()
Output

Explanation:
- plt.figure() creates a new figure object, which is a container for all the plot elements.
- fig.add_subplot(111, projection='3d') adds a set of axes to the figure with 3D projection enabled. The 111 means "1 row, 1 column, first subplot".
- plt.show() renders the plot window, displaying the 3D axes.
Example Of Three-dimensional Plotting using Matplotlib
1. 3d Line plot
A 3D line plot connects points in three-dimensional space to visualize a continuous path. It's useful for showing how a variable evolves over time or space in 3D. This example uses sine and cosine functions to draw a spiraling path.
from mpl_toolkits import mplot3d
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()
ax = plt.axes(projection='3d')
z = np.linspace(0, 1, 100)
x = z * np.sin(25 * z)
y = z * np.cos(25 * z)
ax.plot3D(x, y, z, 'green')
ax.set_title('3D Line Plot')
plt.show()
Output

Explanation: We generate 100 points between 0 and 1 using np.linspace() for z, then compute x = z * np.sin(25z) and y = z * np.cos(25z) to form a spiral. The 3D spiral is plotted using ax.plot3D(x, y, z, 'green').
2. 3D Scatter plot
A 3D scatter plot displays individual data points in three dimensions, helpful for spotting trends or clusters. Each dot represents a point with (x, y, z) values and color can be used to add a fourth dimension.
fig = plt.figure()
ax = plt.axes(projection='3d')
z = np.linspace(0, 1, 100)
x = z * np.sin(25 * z)
y = z * np.cos(25 * z)
c = x + y # Color array based on x and y
ax.scatter(x, y, z, c=c)
ax.set_title('3D Scatter Plot')
plt.show()
Output

Explanation: Using the same x, y and z values, ax.scatter() plots individual 3D points. Colors are set by c = x + y, adding a fourth dimension to visualize variation across points.
3. Surface Plot
Surface plots show a smooth surface that spans across a grid of (x, y) values and is shaped by z values. They’re great for visualizing functions with two variables, providing a clear topography of the data.
x = np.outer(np.linspace(-2, 2, 10), np.ones(10))
y = x.copy().T
z = np.cos(x**2 + y**3)
fig = plt.figure()
ax = plt.axes(projection='3d')
ax.plot_surface(x, y, z, cmap='viridis', edgecolor='green')
ax.set_title('Surface Plot')
plt.show()
Output

Explanation: We create a grid with x and y using np.outer() and .T, then compute z = np.cos(x**2 + y**3). The surface is visualized with ax.plot_surface() using cmap='viridis' for color and edgecolor='green' for gridlines.
4. Wireframe Plot
A wireframe plot is like a surface plot but only shows the edges or "skeleton" of the surface. It’s useful for understanding the structure of a 3D surface without the distraction of color fill.
def f(x, y):
return np.sin(np.sqrt(x**2 + y**2))
x = np.linspace(-1, 5, 10)
y = np.linspace(-1, 5, 10)
X, Y = np.meshgrid(x, y)
Z = f(X, Y)
fig = plt.figure()
ax = plt.axes(projection='3d')
ax.plot_wireframe(X, Y, Z, color='green')
ax.set_title('Wireframe Plot')
plt.show()
Output

Explanation: We define f(x, y) = sin(√(x² + y²)), generate a meshgrid for x and y, and compute z values. Using ax.plot_wireframe(), we render the 3D surface as a green wireframe.
5. Contour plot in 3d
This plot combines a 3D surface with contour lines to highlight elevation or depth. It helps visualize the function’s shape and gradient changes more clearly in 3D space.
def fun(x, y):
return np.sin(np.sqrt(x**2 + y**2))
x = np.linspace(-10, 10, 40)
y = np.linspace(-10, 10, 40)
X, Y = np.meshgrid(x, y)
Z = fun(X, Y)
fig = plt.figure(figsize=(10, 8))
ax = plt.axes(projection='3d')
ax.plot_surface(X, Y, Z, cmap='cool', alpha=0.8)
ax.set_title('3D Contour Plot')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
plt.show()
Output

Explanation: We define fun(x, y) = sin(√(x² + y²)) and generate a dense grid for x and y. The surface is plotted with ax.plot_surface() using alpha=0.8 for transparency and axis labels are added for clarity.
6. Surface Triangulation plot
This plot uses triangular meshes to build a 3D surface from scattered or grid data. It's ideal when the surface is irregular or when using non-rectangular grids.
from matplotlib.tri import Triangulation
def f(x, y):
return np.sin(np.sqrt(x**2 + y**2))
x = np.linspace(-6, 6, 30)
y = np.linspace(-6, 6, 30)
X, Y = np.meshgrid(x, y)
Z = f(X, Y)
tri = Triangulation(X.ravel(), Y.ravel())
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection='3d')
ax.plot_trisurf(tri, Z.ravel(), cmap='cool', edgecolor='none', alpha=0.8)
ax.set_title('Surface Triangulation Plot')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
plt.show()
Output

Explanation: After defining the function and generating x and y with np.meshgrid(), we flatten them using .ravel() and create a Triangulation object. The surface is plotted with ax.plot_trisurf() using a colormap and transparency.
7. Möbius Strip Plot
A Möbius strip is a one-sided surface with a twist—a famous concept in topology. This plot visualizes its 3D geometry, showing how math and art can blend beautifully.
R = 2
u = np.linspace(0, 2*np.pi, 100)
v = np.linspace(-1, 1, 100)
u, v = np.meshgrid(u, v)
x = (R + v * np.cos(u / 2)) * np.cos(u)
y = (R + v * np.cos(u / 2)) * np.sin(u)
z = v * np.sin(u / 2)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(x, y, z, alpha=0.5)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
ax.set_title('Möbius Strip')
ax.set_xlim([-3, 3])
ax.set_ylim([-3, 3])
ax.set_zlim([-3, 3])
plt.show()
Output

Explanation: We generate parameters u and v to span the circle and strip width, mesh them and compute x, y and z using parametric equations. The twisted strip is plotted with ax.plot_surface() using transparency and custom axis limits.