Tensorflow.js tf.LayersModel class .trainOnBatch() Method Last Updated : 01 Sep, 2021 Summarize Comments Improve Suggest changes Share Like Article Like Report Tensorflow.js is an open-source library that is developed by Google for running machine learning models as well as deep learning neural networks in the browser or node environment. The .trainOnBatch() function is used to run a separate gradient update on a particular batch of data. Note: This method varies from fit() as well as fitDataset() in the following ways: This method works on absolutely one batch of data.This method simply returns the loss and metric values, in place of returning the batch by batch loss as well as metric values.This method doesn't favor fine grained options like verbosity and callbacks. Syntax: trainOnBatch(x, y) Parameters: x: The stated input data. It can be of type tf.Tensor, tf.Tensor[], or {[inputName: string]: tf.Tensor}. It can be any one of the following:A stated tf.Tensor, or else an array of tf.Tensors if the stated model possesses multiple inputs.An Object plotting input names to the matching tf.Tensor in case the stated model possesses named inputs.y: The stated Target data. It can be of type tf.Tensor, tf.Tensor[], or {[inputName: string]: tf.Tensor}. It must be constant with respect to x. Return Value: It returns promise of number or number[]. Example 1: JavaScript // Importing the tensorflow.js library import * as tf from "@tensorflow/tfjs" // Training Model const mymodel = tf.sequential( {layers: [tf.layers.dense({units: 2, inputShape: [2]})]}); // Compiling our model const config = {optimizer:'sgd', loss:'meanSquaredError'}; mymodel.compile(config); // Test tensor and target tensor const xs = tf.ones([3,2]); const ys = tf.ones([3,2]); // Calling trainOneBatch() method const result = await mymodel.trainOnBatch(xs, ys); // Printing output console.log(result); Output: 2.0696773529052734 Example 2: JavaScript // Importing the tensorflow.js library import * as tf from "@tensorflow/tfjs" async function run() { // Training Model const mymodel = tf.sequential( {layers: [tf.layers.dense({units: 2, inputShape: [2], activation: 'sigmoid'})]}); // Compiling our model const config = {optimizer:'sgd', loss:'meanSquaredError'}; mymodel.compile(config); // Test tensor and target tensor const xs = tf.truncatedNormal([3,2]); const ys = tf.randomNormal([3,2]); // Calling trainOneBatch() method const result = await mymodel.trainOnBatch(xs, ys); // Printing output console.log(JSON.stringify(+result)); } // Function call await run(); Output: 0.5935208797454834 Reference: https://js.tensorflow.org/api/latest/#tf.LayersModel.trainOnBatch Comment More infoAdvertise with us Next Article Tensorflow.js tf.LayersModel class .fit() Method N nidhi1352singh Follow Improve Article Tags : JavaScript Web Technologies Tensorflow.js Similar Reads Tensorflow.js tf.LayersModel class .fit() Method Tensorflow.js is an open-source library developed by Google for running machine learning models and deep learning neural networks in the browser or node environment. The tf.LayersModel class .fit( ) method is used to train the model for the fixed number of epochs (iterations on a dataset). Syntax: f 4 min read Tensorflow.js tf.LayersModel class .save() Method Tensorflow.js is an open-source library that is developed by Google for running machine learning models as well as deep learning neural networks in the browser or node environment. The .save() function is used to save the structure and/or the weights of the stated LayersModel. Note: An IOHandler is 2 min read Tensorflow.js tf.LayersModel class .predict() Method Tensorflow.js is an open-source library that is developed by Google for running machine learning models as well as deep learning neural networks in the browser or node environment. The .predict() function is used to produce the output estimates for the given input instances. Moreover, the calculatio 2 min read Tensorflow.js tf.LayersModel class .compile() Method Tensorflow.js is an open-source library developed by Google for running machine learning models and deep learning neural networks in the browser or node environment. The .compile() function configures and makes the model for training and evaluation process. By calling .compile() function we prepare 4 min read Tensorflow.js tf.LayersModel class .summary() Method The tf.LayersModel is a class used for training, inference, and evaluation of layers model in tensorflow.js. It contains methods for training, evaluation, prediction, and for saving of layers model purposes. So in this post, we are going to know about the model.summary() function. The model.summary( 2 min read Tensorflow.js tf.Sequential class .trainOnBatch() Method Tensorflow.js is an open-source library that is developed by Google for running machine learning models as well as deep learning neural networks in the browser or node environment. The .trainOnBatch() function is used to run a separate gradient update on a particular batch of data. Note: This method 2 min read Like