Tensorflow.js tf.layers.reLU() Function Last Updated : 26 Apr, 2022 Comments Improve Suggest changes Like Article Like Report Tensorflow.js is a Google-developed open-source toolkit for executing machine learning models and deep learning neural networks in the browser or on the node platform. It also enables developers to create machine learning models in JavaScript and utilize them directly in the browser or with Node.js. The tf.layers.reLU() function is used to apply the rectified linear unit activation function on data. Syntax: tf.layers.thresholdReLU(args?) Input Shape: Arbitrary. When utilizing this layer as the initial layer in a model, use the inputShape configuration. Output Shape: The output has the same shape as the input. Parameters: It accepts the args object which can have the following properties: args: It is an object that contains the following properties:maxValue (number): It is the highest possible output value. inputShape: If this property is set, it will be utilized to construct an input layer that will be inserted before this layer. batchInputShape: If this property is set, an input layer will be created and inserted before this layer. batchSize: If batchInputShape isn't supplied and inputShape is, batchSize is utilized to build the batchInputShape.dtype: It is the kind of data type for this layer. float32 is the default value. This parameter applies exclusively to input layers.name: This is the layer's name and is of string type.trainable: If the weights of this layer may be changed by fit. True is the default value.weights: The layer's initial weight values. Returns: It returns an object (ReLU). Example 1: JavaScript import * as tf from "@tensorflow/tfjs"; const reLULayer = tf.layers.reLU({maxValue: 10}) const x = tf.tensor([11, 8, 9, 12]); reLULayer.apply(x).print(); Output: Tensor [10, 8, 9, 10] Example 2: JavaScript import * as tf from "@tensorflow/tfjs"; const reLULayer = tf.layers.reLU({ maxValue: 0.9 }); const x = tf.tensor([1.12, 0.8, 1.9, 0.12, 0.25, 3.4], [2, 3]); reLULayer.apply(x).print(); Output: Tensor [[0.9 , 0.8 , 0.9], [0.12, 0.25, 0.9]] Reference: https://js.tensorflow.org/api/latest/#layers.reLU Comment More infoAdvertise with us Next Article Tensorflow.js tf.layers.reLU() Function A aayushmohansinha Follow Improve Article Tags : JavaScript Web Technologies Tensorflow.js Tensorflow.js-Advanced Activation TensorFlow.js-layers +1 More Similar Reads Tensorflow.js tf.layers.prelu() Function Tensorflow.js is a Google-developed open-source toolkit for executing machine learning models and deep learning neural networks in the browser or on the node platform. It also enables developers to create machine learning models in JavaScript and utilize them directly in the browser or with Node.js. 2 min read Tensorflow.js tf.layers.leakyReLU() Function Tensorflow.js is a Google-developed open-source toolkit for executing machine learning models and deep learning neural networks in the browser or on the node platform. It also enables developers to create machine learning models in JavaScript and utilize them directly in the browser or with Node.js. 2 min read Tensorflow.js tf.leakyRelu() Function Tensorflow.js is an open-source library which is being developed by Google for running machine learning models as well as deep learning neural networks in the browser or node environment. The .leakyRelu() function is used to find the leaky rectified linear of the stated tensor input and is done elem 2 min read Tensorflow.js tf.layers.reshape() Function Tensorflow.js is an open-source library that is being developed by Google for running machine learning models as well as deep learning neural networks in the browser or node environment. The tf.layers.reshape() function is used to Reshape an input to a certain shape. Syntax: tf.layers.reshape(args) 2 min read Tensorflow.js tf.relu() Function Tensorflow.js is an open-source library that is developed by Google for running machine learning models as well as deep learning neural networks in the browser or node environment. The .relu() function is used to find rectified linear of the stated tensor input i.e. max(x, 0) and is done element wis 1 min read Like