SymPy | Permutation.size() in Python Last Updated : 27 Aug, 2019 Comments Improve Suggest changes Like Article Like Report Permutation.size() : size() is a sympy Python library function that returns the number of elements in the permutation. Syntax : sympy.combinatorics.permutations.Permutation.size() Return : number of elements in the permutation. Code #1 : size() Example Python3 1=1 # Python code explaining # SymPy.Permutation.size() # importing SymPy libraries from sympy.combinatorics.partitions import Partition from sympy.combinatorics.permutations import Permutation # Using from # sympy.combinatorics.permutations.Permutation.size() method # creating Permutation a = Permutation([[2, 0], [3, 1]]) b = Permutation([1, 3, 5, 4, 2, 0]) print ("Permutation a - size form : ", a.size) print ("Permutation b - size form : ", b.size) Output : Permutation a - size form : 4 Permutation b - size form : 6 Code #2 : size() Example Python3 1=1 # Python code explaining # SymPy.Permutation.size() # importing SymPy libraries from sympy.combinatorics.partitions import Partition from sympy.combinatorics.permutations import Permutation # Using from # sympy.combinatorics.permutations.Permutation.size() method # creating Permutation a = Permutation([[2, 4, 0], [3, 1, 2], [1, 5, 6]]) print ("Permutation a - size form : ", a.size) Output : Permutation a - size form : 7 Comment More infoAdvertise with us Next Article SymPy | Permutation.size() in Python N noobestars101 Follow Improve Article Tags : Python SymPy Practice Tags : python Similar Reads SymPy | Permutation.runs() in Python Permutation.runs() : runs() is a sympy Python library function that returns the runs of the permutation. Runs = An ascending sequence in a permutation Syntax : sympy.combinatorics.permutations.Permutation.runs() Return : runs of the permutation. Code #1 : runs() Example Python3 1=1 # Python code exp 1 min read SymPy | Permutation.signature() in Python Permutation.signature() : signature() is a sympy Python library function that returns the signature of the permutation needed to place the elements of the permutation in canonical order. Signature = (-1)^<number of inversions> Syntax : sympy.combinatorics.permutations.Permutation.signature() R 1 min read SymPy | Permutation.rmul() in Python Permutation.rmul() : rmul() is a sympy Python library function that returns the product of the permutation. Syntax : sympy.combinatorics.permutations.Permutation.rmul() Return : product of the permutation. Code #1 : rmul() Example Python3 1=1 # Python code explaining # SymPy.Permutation.rmul() # imp 1 min read SymPy | Permutation.rank() in Python Permutation.rank() : rank() is a sympy Python library function that returns the lexicographic rank of the permutation. Syntax : sympy.combinatorics.permutations.Permutation.rank() Return : lexicographic rank of the permutation Code #1 : rank() Example Python3 1=1 # Python code explaining # SymPy.Per 1 min read SymPy | Permutation.support() in Python Permutation.support() : support() is a sympy Python library function that returns the elements in permutation, P, for which P[i] != i. Syntax : sympy.combinatorics.permutations.Permutation.support() Return : elements in permutation, P, for which P[i] != i. Code #1 : support() Example Python3 1=1 # P 1 min read Like