Open In App

SymPy | Permutation.signature() in Python

Last Updated : 27 Aug, 2019
Comments
Improve
Suggest changes
Like Article
Like
Report
Permutation.signature() : signature() is a sympy Python library function that returns the signature of the permutation needed to place the elements of the permutation in canonical order. Signature = (-1)^<number of inversions>
Syntax : sympy.combinatorics.permutations.Permutation.signature() Return : signature of the permutation.
Code #1 : signature() Example Python3 1=1
# Python code explaining
# SymPy.Permutation.signature()

# importing SymPy libraries
from sympy.combinatorics.partitions import Partition
from sympy.combinatorics.permutations import Permutation

# Using from sympy.combinatorics.permutations.Permutation.signature() method 

# creating Permutation
a = Permutation([[2, 0], [3, 1]])

b = Permutation([1, 3, 5, 4, 2, 0])


print ("Permutation a - signature form : ", a.signature())
print ("Permutation b - signature form : ", b.signature())
Output :
Permutation a - signature form : 1 Permutation b - signature form : -1
Code #2 : signature() Example Python3 1=1
# Python code explaining
# SymPy.Permutation.signature()

# importing SymPy libraries
from sympy.combinatorics.partitions import Partition
from sympy.combinatorics.permutations import Permutation

# Using from 
# sympy.combinatorics.permutations.Permutation.signature() method 

# creating Permutation
a = Permutation([[2, 4, 0], 
                 [3, 1, 2],
                 [1, 5, 6]])


print ("Permutation a - signature form : ", a.signature())
Output :
Permutation a - signature form : 1

Article Tags :
Practice Tags :

Similar Reads