Sum of Bitwise OR of each array element of an array with all elements of another array
Last Updated :
11 Oct, 2022
Given two arrays arr1[] of size M and arr2[] of size N, the task is to find the sum of bitwise OR of each element of arr1[] with every element of the array arr2[].
Examples:
Input: arr1[] = {1, 2, 3}, arr2[] = {1, 2, 3}, M = 3, N = 3
Output: 7 8 9
Explanation:
For arr[0]: Sum = arr1[0]|arr2[0] + arr1[0]|arr2[1] + arr1[0]|arr2[2], Sum = 1|1 + 1|2 + 1|3 = 7
For arr[1], Sum = arr1[1]|arr2[0] + arr1[1]|arr2[1] + arr1[1]|arr2[2], Sum= 2|1 + 2|2 + 2|3 = 8
For arr[2], Sum = arr1[2]|arr2[0] + arr1[2]|arr2[1] + arr1[2]|arr2[2], Sum = 3|1 + 3|2 + 3|3 = 9
Input: arr1[] = {2, 4, 8, 16}, arr2[] = {2, 4, 8, 16}, M = 4, N = 4
Output: 36 42 54 78
Naive Approach: The simplest0 approach to solve this problem to traverse the array arr1[] and for each array element in the array arr[], calculate Bitwise OR of each element in the array arr2[].
Time Complexity: O(N2)
Auxiliary Space: O(N)
Efficient Approach: To optimize the above approach, the idea is to use Bit Manipulation to solve the above problem.
- According to the Bitwise OR property, while performing the operation, the ith bit will be set bit only when either of both numbers has a set bit at the ith position, where 0 ≤ i <32.
- Therefore, for a number in arr1[], if the ith bit is not a set bit, then the ith place will contribute a sum of K * 2i , where K is the total number in arr2[] having set bit at the ith position.
- Otherwise, if the number has a set bit at the ith place, then it will contribute a sum of N * 2i.
Follow the steps below to solve the problem:
- Initialize an integer array, say frequency[], to store the count of numbers in arr2[] having set-bit at ith position ( 0 ≤ i < 32).
- Traverse the array arr2[] and represent each array element in its binary form and increment the count in the frequency[] array by one at the positions having set bit in the binary representations.
- Traverse the array arr1[].
- Initialize an integer variable, say bitwise_OR_sum with 0.
- Traverse in the range [0, 31] using variable j.
- If the jth bit is set in the binary representation of arr2[i], then increment bitwise_OR_sum by N * 2j. Otherwise, increment by frequency[j] * 2j
- Print the sum obtained bitwise_OR_sum.
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to compute sum of Bitwise OR
// of each element in arr1[] with all
// elements of the array arr2[]
void Bitwise_OR_sum_i(int arr1[], int arr2[],
int M, int N)
{
// Declaring an array of
// size 32 to store the
// count of each bit
int frequency[32] = { 0 };
// Traverse the array arr1[]
for (int i = 0; i < N; i++) {
// Current bit position
int bit_position = 0;
int num = arr1[i];
// While num exceeds 0
while (num) {
// Checks if i-th bit
// is set or not
if (num & 1) {
// Increment the count at
// bit_position by one
frequency[bit_position] += 1;
}
// Increment bit_position
bit_position += 1;
// Right shift the num by one
num >>= 1;
}
}
// Traverse in the arr2[]
for (int i = 0; i < M; i++) {
int num = arr2[i];
// Store the ith bit value
int value_at_that_bit = 1;
// Total required sum
int bitwise_OR_sum = 0;
// Traverse in the range [0, 31]
for (int bit_position = 0;
bit_position < 32;
bit_position++) {
// Check if current bit is set
if (num & 1) {
// Increment the Bitwise
// sum by N*(2^i)
bitwise_OR_sum
+= N * value_at_that_bit;
}
else {
bitwise_OR_sum
+= frequency[bit_position]
* value_at_that_bit;
}
// Right shift num by one
num >>= 1;
// Left shift valee_at_that_bit by one
value_at_that_bit <<= 1;
}
// Print the sum obtained for ith
// number in arr1[]
cout << bitwise_OR_sum << ' ';
}
return;
}
// Driver Code
int main()
{
// Given arr1[]
int arr1[] = { 1, 2, 3 };
// Given arr2[]
int arr2[] = { 1, 2, 3 };
// Size of arr1[]
int N = sizeof(arr1) / sizeof(arr1[0]);
// Size of arr2[]
int M = sizeof(arr2) / sizeof(arr2[0]);
// Function Call
Bitwise_OR_sum_i(arr1, arr2, M, N);
return 0;
}
Java
// Java program for the above approach
import java.util.*;
class GFG{
// Function to compute sum of Bitwise OR
// of each element in arr1[] with all
// elements of the array arr2[]
static void Bitwise_OR_sum_i(int arr1[], int arr2[],
int M, int N)
{
// Declaring an array of
// size 32 to store the
// count of each bit
int frequency[] = new int[32];
Arrays.fill(frequency, 0);
// Traverse the array arr1[]
for(int i = 0; i < N; i++)
{
// Current bit position
int bit_position = 0;
int num = arr1[i];
// While num exceeds 0
while (num != 0)
{
// Checks if i-th bit
// is set or not
if ((num & 1) != 0)
{
// Increment the count at
// bit_position by one
frequency[bit_position] += 1;
}
// Increment bit_position
bit_position += 1;
// Right shift the num by one
num >>= 1;
}
}
// Traverse in the arr2[]
for(int i = 0; i < M; i++)
{
int num = arr2[i];
// Store the ith bit value
int value_at_that_bit = 1;
// Total required sum
int bitwise_OR_sum = 0;
// Traverse in the range [0, 31]
for(int bit_position = 0;
bit_position < 32;
bit_position++)
{
// Check if current bit is set
if ((num & 1) != 0)
{
// Increment the Bitwise
// sum by N*(2^i)
bitwise_OR_sum += N * value_at_that_bit;
}
else
{
bitwise_OR_sum += frequency[bit_position] *
value_at_that_bit;
}
// Right shift num by one
num >>= 1;
// Left shift valee_at_that_bit by one
value_at_that_bit <<= 1;
}
// Print the sum obtained for ith
// number in arr1[]
System.out.print(bitwise_OR_sum + " ");
}
return;
}
// Driver code
public static void main(String[] args)
{
// Given arr1[]
int arr1[] = { 1, 2, 3 };
// Given arr2[]
int arr2[] = { 1, 2, 3 };
// Size of arr1[]
int N = arr1.length;
// Size of arr2[]
int M = arr2.length;
// Function Call
Bitwise_OR_sum_i(arr1, arr2, M, N);
}
}
// This code is contributed by susmitakundugoaldanga
Python3
# Python3 program for the above approach
# Function to compute sum of Bitwise OR
# of each element in arr1[] with all
# elements of the array arr2[]
def Bitwise_OR_sum_i(arr1, arr2, M, N):
# Declaring an array of
# size 32 to store the
# count of each bit
frequency = [0] * 32
# Traverse the array arr1[]
for i in range(N):
# Current bit position
bit_position = 0
num = arr1[i]
# While num exceeds 0
while (num):
# Checks if i-th bit
# is set or not
if (num & 1 != 0):
# Increment the count at
# bit_position by one
frequency[bit_position] += 1
# Increment bit_position
bit_position += 1
# Right shift the num by one
num >>= 1
# Traverse in the arr2[]
for i in range(M):
num = arr2[i]
# Store the ith bit value
value_at_that_bit = 1
# Total required sum
bitwise_OR_sum = 0
# Traverse in the range [0, 31]
for bit_position in range(32):
# Check if current bit is set
if (num & 1 != 0):
# Increment the Bitwise
# sum by N*(2^i)
bitwise_OR_sum += N * value_at_that_bit
else:
bitwise_OR_sum += (frequency[bit_position] *
value_at_that_bit)
# Right shift num by one
num >>= 1
# Left shift valee_at_that_bit by one
value_at_that_bit <<= 1
# Print the sum obtained for ith
# number in arr1[]
print(bitwise_OR_sum, end = " ")
return
# Driver Code
# Given arr1[]
arr1 = [ 1, 2, 3 ]
# Given arr2[]
arr2 = [ 1, 2, 3 ]
# Size of arr1[]
N = len(arr1)
# Size of arr2[]
M = len(arr2)
# Function Call
Bitwise_OR_sum_i(arr1, arr2, M, N)
# This code is contributed by code_hunt
C#
// C# program for the above approach
using System;
class GFG
{
// Function to compute sum of Bitwise OR
// of each element in arr1[] with all
// elements of the array arr2[]
static void Bitwise_OR_sum_i(int[] arr1, int[] arr2,
int M, int N)
{
// Declaring an array of
// size 32 to store the
// count of each bit
int[] frequency = new int[32];
for(int i = 0; i < 32; i++)
{
frequency[i] = 0;
}
// Traverse the array arr1[]
for(int i = 0; i < N; i++)
{
// Current bit position
int bit_position = 0;
int num = arr1[i];
// While num exceeds 0
while (num != 0)
{
// Checks if i-th bit
// is set or not
if ((num & 1) != 0)
{
// Increment the count at
// bit_position by one
frequency[bit_position] += 1;
}
// Increment bit_position
bit_position += 1;
// Right shift the num by one
num >>= 1;
}
}
// Traverse in the arr2[]
for(int i = 0; i < M; i++)
{
int num = arr2[i];
// Store the ith bit value
int value_at_that_bit = 1;
// Total required sum
int bitwise_OR_sum = 0;
// Traverse in the range [0, 31]
for(int bit_position = 0;
bit_position < 32;
bit_position++)
{
// Check if current bit is set
if ((num & 1) != 0)
{
// Increment the Bitwise
// sum by N*(2^i)
bitwise_OR_sum += N * value_at_that_bit;
}
else
{
bitwise_OR_sum += frequency[bit_position] *
value_at_that_bit;
}
// Right shift num by one
num >>= 1;
// Left shift valee_at_that_bit by one
value_at_that_bit <<= 1;
}
// Print the sum obtained for ith
// number in arr1[]
Console.Write(bitwise_OR_sum + " ");
}
return;
}
// Driver Code
public static void Main()
{
// Given arr1[]
int[] arr1 = { 1, 2, 3 };
// Given arr2[]
int[] arr2 = { 1, 2, 3 };
// Size of arr1[]
int N = arr1.Length;
// Size of arr2[]
int M = arr2.Length;
// Function Call
Bitwise_OR_sum_i(arr1, arr2, M, N);
}
}
// This code is contributed by sanjoy_62
JavaScript
<script>
// Javascript program for the above approach
// Function to compute sum of Bitwise OR
// of each element in arr1[] with all
// elements of the array arr2[]
function Bitwise_OR_sum_i(arr1, arr2, M, N) {
// Declaring an array of
// size 32 to store the
// count of each bit
let frequency = new Array(32).fill(0);
// Traverse the array arr1[]
for (let i = 0; i < N; i++) {
// Current bit position
let bit_position = 0;
let num = arr1[i];
// While num exceeds 0
while (num) {
// Checks if i-th bit
// is set or not
if (num & 1) {
// Increment the count at
// bit_position by one
frequency[bit_position] += 1;
}
// Increment bit_position
bit_position += 1;
// Right shift the num by one
num >>= 1;
}
}
// Traverse in the arr2[]
for (let i = 0; i < M; i++) {
let num = arr2[i];
// Store the ith bit value
let value_at_that_bit = 1;
// Total required sum
let bitwise_OR_sum = 0;
// Traverse in the range [0, 31]
for (let bit_position = 0; bit_position < 32; bit_position++) {
// Check if current bit is set
if (num & 1) {
// Increment the Bitwise
// sum by N*(2^i)
bitwise_OR_sum += N * value_at_that_bit;
}
else {
bitwise_OR_sum += frequency[bit_position] * value_at_that_bit;
}
// Right shift num by one
num >>= 1;
// Left shift valee_at_that_bit by one
value_at_that_bit <<= 1;
}
// Print the sum obtained for ith
// number in arr1[]
document.write(bitwise_OR_sum + ' ');
}
return;
}
// Driver Code
// Given arr1[]
let arr1 = [1, 2, 3];
// Given arr2[]
let arr2 = [1, 2, 3];
// Size of arr1[]
let N = arr1.length;
// Size of arr2[]
let M = arr2.length;
// Function Call
Bitwise_OR_sum_i(arr1, arr2, M, N);
// This code is contributed by _saurabh_jaiswal
</script>
Time Complexity: O(N*32)
Auxiliary Space: O(1) because size of frequency array is constant
Similar Reads
Sum of Bitwise XOR of elements of an array with all elements of another array Given an array arr[] of size N and an array Q[], the task is to calculate the sum of Bitwise XOR of all elements of the array arr[] with each element of the array q[]. Examples: Input: arr[ ] = {5, 2, 3}, Q[ ] = {3, 8, 7}Output: 7 34 11Explanation:For Q[0] ( = 3): Sum = 5 ^ 3 + 2 ^ 3 + 3 ^ 3 = 7.For
9 min read
Sum of Bitwise AND of each array element with the elements of another array Given two arrays arr1[] of size M and arr2[] of size N, the task is to find the sum of bitwise AND of each element of arr1[] with the elements of the array arr2[]. Examples: Input: arr1[] = {1, 2, 3}, arr2[] = {1, 2, 3}, M = 3, N = 3Output: 2 4 6Explanation:For elements at index 0 in arr1[], Sum = a
11 min read
Sum of Bitwise XOR of each array element with all other array elements Given an array arr[] of length N, the task for every array element is to print the sum of its Bitwise XOR with all other array elements. Examples: Input: arr[] = {1, 2, 3}Output: 5 4 3Explanation:For arr[0]: arr[0] ^ arr[0] + arr[0] ^ arr[1] + arr[0] ^ arr[2] = 1^1 + 1^2 + 1^3 = 0 + 3 + 2 = 5For arr
9 min read
Sum of Bitwise OR of every array element paired with all other array elements Given an array arr[] consisting of non-negative integers, the task for each array element arr[i] is to print the sum of Bitwise OR of all pairs (arr[i], arr[j]) ( 0 ⤠j ⤠N ). Examples: Input: arr[] = {1, 2, 3, 4}Output: 12 14 16 22Explanation:For i = 0 the required sum will be (1 | 1) + (1 | 2) + (
11 min read
Rearrange an array to maximize sum of Bitwise AND of same-indexed elements with another array Given two arrays A[] and B[] of sizes N, the task is to find the maximum sum of Bitwise AND of same-indexed elements in the arrays A[] and B[] that can be obtained by rearranging the array B[] in any order. Examples: Input: A[] = {1, 2, 3, 4}, B[] = {3, 4, 1, 2}Output: 10Explanation: One possible wa
15 min read