Split array into K subarrays such that sum of maximum of all subarrays is maximized
Given an array arr[] of size N and a number K, the task is to partition the given array into K contiguous subarrays such that the sum of the maximum of each subarray is the maximum possible. If it is possible to split the array in such a manner, then print the maximum possible sum. Otherwise, print "-1".
Examples:
Input: arr[] = {5, 3, 2, 7, 6, 4}, N = 6, K = 3
Output: 18
5
3 2 7
6 4
Explanation:
One way is to split the array at indices 0, 3 and 4.
Therefore, the subarrays formed are {5}, {3, 2, 7} and {6, 4}.
Therefore, sum of the maximum of each subarray = 5 + 7 + 6 =18 ( which is the maximum possible).Input: arr[] = {1, 4, 5, 6, 1, 2}, N = 6, K = 2
Output: 11
Approach: The given problem can be solved using Map data structure and Sorting techniques, based on the following observations:
- The maximum obtainable sum would be the sum of the K-largest elements of the array as it is always possible to divide the array into K segments in such a way that the maximum of each segment is one of the K-largest elements.
- One way would be to break a segment as soon as one of the K-largest element is encountered.
Follow the steps below to solve the problem:
- First, if N is less than K then print "-1" and then return.
- Copy array into another array say temp[] and sort the array, temp[] in descending order.
- Initialize a variable ans to 0, to store the maximum sum possible.
- Also, Initialize a map say mp, to store the frequency of the K-largest elements.
- Iterate in the range [0, K-1] using a variable say i, and in each iteration increment the ans by temp[i] and increment the count of temp[i] in map mp.
- Initialize a vector of vectors say P to store a possible partition and a vector say V to store the elements of a partition.
- Iterate in the range [0, N-1] and using a variable say i and perform the following steps:
- Push the current element arr[i] in the vector V.
- If mp[arr[i]] is greater than 0 then do the following:
- Decrement K and count of arr[i] in the map mp by 1.
- If K is equal to 0 i.e it is the last segment then push all the remaining elements of the array arr[] in V.
- Now push the current segment V in the P.
- Finally, after completing the above steps, print the maximum sum stores in variable ans and then partition stored in P.
Below is the implementation of the above approach:
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to split the array into K
// subarrays such that the sum of
// maximum of each subarray is maximized
void partitionIntoKSegments(int arr[],
int N, int K)
{
// If N is less than K
if (N < K) {
cout << -1 << endl;
return;
}
// Map to store the K
// largest elements
map<int, int> mp;
// Auxiliary array to
// store and sort arr[]
int temp[N];
// Stores the maximum sum
int ans = 0;
// Copy arr[] to temp[]
for (int i = 0; i < N; i++) {
temp[i] = arr[i];
}
// Sort array temp[] in
// descending order
sort(temp, temp + N,
greater<int>());
// Iterate in the range [0, K - 1]
for (int i = 0; i < K; i++) {
// Increment sum by temp[i]
ans += temp[i];
// Increment count of
// temp[i] in the map mp
mp[temp[i]]++;
}
// Stores the partitions
vector<vector<int> > P;
// Stores temporary subarrays
vector<int> V;
// Iterate over the range [0, N - 1]
for (int i = 0; i < N; i++) {
V.push_back(arr[i]);
// If current element is
// one of the K largest
if (mp[arr[i]] > 0) {
mp[arr[i]]--;
K--;
if (K == 0) {
i++;
while (i < N) {
V.push_back(arr[i]);
i++;
}
}
if (V.size()) {
P.push_back(V);
V.clear();
}
}
}
// Print the ans
cout << ans << endl;
// Print the partition
for (auto u : P) {
for (auto x : u)
cout << x << " ";
cout << endl;
}
}
// Driver code
int main()
{
// Input
int A[] = { 5, 3, 2, 7, 6, 4 };
int N = sizeof(A) / sizeof(A[0]);
int K = 3;
// Function call
partitionIntoKSegments(A, N, K);
return 0;
}
// C++ program for the above approach
using namespace std;
// Function to split the array into K
// subarrays such that the sum of
// maximum of each subarray is maximized
void partitionIntoKSegments(int arr[],
int N, int K)
{
// If N is less than K
if (N < K) {
cout << -1 << endl;
return;
}
// Map to store the K
// largest elements
map<int, int> mp;
// Auxiliary array to
// store and sort arr[]
int temp[N];
// Stores the maximum sum
int ans = 0;
// Copy arr[] to temp[]
for (int i = 0; i < N; i++) {
temp[i] = arr[i];
}
// Sort array temp[] in
// descending order
sort(temp, temp + N,
greater<int>());
// Iterate in the range [0, K - 1]
for (int i = 0; i < K; i++) {
// Increment sum by temp[i]
ans += temp[i];
// Increment count of
// temp[i] in the map mp
mp[temp[i]]++;
}
// Stores the partitions
vector<vector<int> > P;
// Stores temporary subarrays
vector<int> V;
// Iterate over the range [0, N - 1]
for (int i = 0; i < N; i++) {
V.push_back(arr[i]);
// If current element is
// one of the K largest
if (mp[arr[i]] > 0) {
mp[arr[i]]--;
K--;
if (K == 0) {
i++;
while (i < N) {
V.push_back(arr[i]);
i++;
}
}
if (V.size()) {
P.push_back(V);
V.clear();
}
}
}
// Print the ans
cout << ans << endl;
// Print the partition
for (auto u : P) {
for (auto x : u)
cout << x << " ";
cout << endl;
}
}
// Driver code
int main()
{
// Input
int A[] = { 5, 3, 2, 7, 6, 4 };
int N = sizeof(A) / sizeof(A[0]);
int K = 3;
// Function call
partitionIntoKSegments(A, N, K);
return 0;
}
// Java program for the above approach
import java.util.*;
public class GFG
{
// Function to split the array into K
// subarrays such that the sum of
// maximum of each subarray is maximized
static void partitionIntoKSegments(int arr[], int N, int K)
{
// If N is less than K
if (N < K)
{
System.out.println(-1);
return;
}
// Map to store the K
// largest elements
HashMap<Integer,Integer> mp = new HashMap<Integer,Integer>();
// Auxiliary array to
// store and sort arr[]
Integer []temp = new Integer[N];
// Stores the maximum sum
int ans = 0;
// Copy arr[] to temp[]
for(int i = 0; i < N; i++)
{
temp[i] = arr[i];
}
// Sort array temp[] in
// descending order
Arrays.sort(temp,Collections.reverseOrder());
//Array.Reverse(temp);
// Iterate in the range [0, K - 1]
for(int i = 0; i < K; i++)
{
// Increment sum by temp[i]
ans += temp[i];
// Increment count of
// temp[i] in the map mp
if (mp.containsKey(temp[i]))
mp.get(temp[i]++);
else
mp.put(temp[i], 1);
}
// Stores the partitions
ArrayList<ArrayList<Integer>> P = new ArrayList<ArrayList<Integer>>();
// Stores temporary subarrays
ArrayList<Integer> V = new ArrayList<Integer>();
// Iterate over the range [0, N - 1]
for(int i = 0; i < N; i++)
{
V.add(arr[i]);
// If current element is
// one of the K largest
if (mp.containsKey(arr[i]) && mp.get(arr[i]) > 0)
{
mp.get(arr[i]--);
K--;
if (K == 0)
{
i++;
while (i < N)
{
V.add(arr[i]);
i++;
}
}
if (V.size() > 0)
{
P.add(new ArrayList<Integer>(V));
V.clear();
}
}
}
// Print the ans
System.out.println(ans);
// Print the partition
for (ArrayList<Integer > subList : P)
{
for(Integer item : subList)
{
System.out.print(item+" ");
}
System.out.println();
}
}
// Driver code
public static void main(String args[])
{
// Input
int []A = { 5, 3, 2, 7, 6, 4 };
int N = A.length;
int K = 3;
// Function call
partitionIntoKSegments(A, N, K);
}
}
// This code is contributed by SoumikMondal
# Python program for the above approach
# Function to split the array into K
# subarrays such that the sum of
# maximum of each subarray is maximized
def partitionIntoKSegments(arr, N, K):
# If N is less than K
if (N < K):
print(-1)
return
# Map to store the K
# largest elements
mp = {}
# Auxiliary array to
# store and sort arr[]
temp = [0]*N
# Stores the maximum sum
ans = 0
# Copy arr[] to temp[]
for i in range(N):
temp[i] = arr[i]
# Sort array temp[] in
# descending order
temp = sorted(temp)[::-1]
# Iterate in the range [0, K - 1]
for i in range(K):
# Increment sum by temp[i]
ans += temp[i]
# Increment count of
# temp[i] in the map mp
mp[temp[i]] = mp.get(temp[i], 0) + 1
# Stores the partitions
P = []
# Stores temporary subarrays
V = []
# Iterate over the range [0, N - 1]
for i in range(N):
V.append(arr[i])
# If current element is
# one of the K largest
if (arr[i] in mp):
mp[arr[i]] -= 1
K -= 1
if (K == 0):
i += 1
while (i < N):
V.append(arr[i])
i += 1
# print(V)
if (len(V) > 0):
P.append(list(V))
V.clear()
# Print ans
print(ans)
# Print partition
for u in P:
for x in u:
print(x,end=" ")
print()
# Driver code
if __name__ == '__main__':
# Input
A = [5, 3, 2, 7, 6, 4]
N = len(A)
K = 3
# Function call
partitionIntoKSegments(A, N, K)
# This code is contributed by mohit kumar 29.
// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG{
// Function to split the array into K
// subarrays such that the sum of
// maximum of each subarray is maximized
static void partitionIntoKSegments(int []arr,
int N, int K)
{
// If N is less than K
if (N < K)
{
Console.WriteLine(-1);
return;
}
// Map to store the K
// largest elements
Dictionary<int,
int> mp = new Dictionary<int,
int>();
// Auxiliary array to
// store and sort arr[]
int []temp = new int[N];
// Stores the maximum sum
int ans = 0;
// Copy arr[] to temp[]
for(int i = 0; i < N; i++)
{
temp[i] = arr[i];
}
// Sort array temp[] in
// descending order
Array.Sort(temp);
Array.Reverse(temp);
// Iterate in the range [0, K - 1]
for(int i = 0; i < K; i++)
{
// Increment sum by temp[i]
ans += temp[i];
// Increment count of
// temp[i] in the map mp
if (mp.ContainsKey(temp[i]))
mp[temp[i]]++;
else
mp.Add(temp[i],1);
}
// Stores the partitions
List<List<int>> P = new List<List<int>>();
// Stores temporary subarrays
List<int> V = new List<int>();
// Iterate over the range [0, N - 1]
for(int i = 0; i < N; i++)
{
V.Add(arr[i]);
// If current element is
// one of the K largest
if (mp.ContainsKey(arr[i]) && mp[arr[i]] > 0)
{
mp[arr[i]]--;
K--;
if (K == 0)
{
i++;
while (i < N)
{
V.Add(arr[i]);
i++;
}
}
if (V.Count > 0)
{
P.Add(new List<int>(V));
V.Clear();
}
}
}
// Print the ans
Console.WriteLine(ans);
// Print the partition
foreach (List<int> subList in P)
{
foreach (int item in subList)
{
Console.Write(item+" ");
}
Console.WriteLine();
}
}
// Driver code
public static void Main()
{
// Input
int []A = { 5, 3, 2, 7, 6, 4 };
int N = A.Length;
int K = 3;
// Function call
partitionIntoKSegments(A, N, K);
}
}
// This code is contributed by SURENDRA_GANGWAR
<script>
// Javascript program for the above approach
// Function to split the array into K
// subarrays such that the sum of
// maximum of each subarray is maximized
function partitionIntoKSegments(arr, N, K)
{
// If N is less than K
if (N < K) {
document.write(-1 + "<br>");
return;
}
// Map to store the K
// largest elements
let mp = new Map();
// Auxiliary array to
// store and sort arr[]
let temp = new Array(N);
// Stores the maximum sum
let ans = 0;
// Copy arr[] to temp[]
for (let i = 0; i < N; i++) {
temp[i] = arr[i];
}
// Sort array temp[] in
// descending order
temp.sort((a, b) => a - b).reverse();
// Iterate in the range [0, K - 1]
for (let i = 0; i < K; i++) {
// Increment sum by temp[i]
ans += temp[i];
// Increment count of
// temp[i] in the map mp
if (mp.has(temp[i])) {
mp.set(temp[i], mp.get(temp[i]) + 1)
} else {
mp.set(temp[i], 1)
}
}
// Stores the partitions
let P = [];
// Stores temporary subarrays
let V = [];
// Iterate over the range [0, N - 1]
for (let i = 0; i < N; i++) {
V.push(arr[i]);
// If current element is
// one of the K largest
if (mp.get(arr[i]) > 0)
{
mp.set(arr[i], mp.get(arr[i]) - 1)
K--;
if (K == 0) {
i++;
while (i < N) {
V.push(arr[i]);
i++;
}
}
if (V.length) {
P.push(V);
V = [];
}
}
}
// Print the ans
document.write(ans + "<br>");
// Print the partition
for (let u of P) {
for (let x of u)
document.write(x + " ");
document.write("<br>");
}
}
// Driver code
// Input
let A = [5, 3, 2, 7, 6, 4];
let N = A.length
let K = 3;
// Function call
partitionIntoKSegments(A, N, K);
// This code is contributed by sanjoy_62.
</script>
Output:
18 5 3 2 7 6 4
Time Complexity: O(N*log(N))
Auxiliary Space: O(N)
Related Topic: Subarrays, Subsequences, and Subsets in Array