Open In App

Sort elements of array whose modulo with K yields P

Last Updated : 08 Sep, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array of integers and a number K. The task is to sort only those elements of the array which yields remainder P upon division by K . Sorting must be done at their relative positions only without affecting any other elements.

Examples

Input : arr[] = {10, 3, 2, 6, 12}, K = 4, P = 2 
Output : 2 3 6 10 12

Input : arr[] = {3, 4, 5, 10, 11, 1}, K = 3, P = 1 
Output : 3 1 5 4 11 10

Approach: 

  • Initialise two empty vectors.
  • Traverse the array, from left to right and check modulo of each element with K.
  • In first vector, insert the index of all elements which yields remainder P.
  • In second vector, insert the elements which yields remainder P.
  • Sort the second vector.
  • Now, we have the index of all required elements and also all of the required elements in sorted order.
  • So, insert the elements of the second vector into the array at the indices present in first vector one by one.

Below is the implementation of the above approach: 

C++
// C++ program for sorting array elements
// whose modulo with K yields P

#include <bits/stdc++.h>
using namespace std;

// Function to sort elements
// whose modulo with K yields P
void sortWithRemainderP(int arr[], int n, int k, int p)
{
    // initialise two vectors
    vector<int> v1, v2;

    for (int i = 0; i < n; i++) {
        if (arr[i] % k == p) {

            // first vector contains indices of
            // required element
            v1.push_back(i);

            // second vector contains
            // required elements
            v2.push_back(arr[i]);
        }
    }

    // sorting the elements in second vector
    sort(v2.begin(), v2.end());

    // replacing the elements whose modulo with K yields P
    // with the sorted elements
    for (int i = 0; i < v1.size(); i++)
        arr[v1[i]] = v2[i];

    // printing the new sorted array elements
    for (int i = 0; i < n; i++)
        cout << arr[i] << " ";
}

// Driver code
int main()
{
    int arr[] = { 8, 255, 16, 2, 4, 0 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 2;
    int p = 0;

    sortWithRemainderP(arr, n, k, p);

    return 0;
}
Java
// Java program for sorting array elements 
// whose modulo with K yields P 
import java.util.*;
class GFG 
{

// Function to sort elements 
// whose modulo with K yields P 
static void sortWithRemainderP(int arr[], int n, int k, int p) 
{ 
    // initialise two vectors 
    Vector<Integer> v1 = new Vector<Integer>();
    Vector<Integer> v2 = new Vector<Integer>(); 

    for (int i = 0; i < n; i++)
    { 
        if (arr[i] % k == p) 
        { 

            // first vector contains indices of 
            // required element 
            v1.add(i); 

            // second vector contains 
            // required elements 
            v2.add(arr[i]); 
        } 
    } 

    // sorting the elements in second vector 
    Collections.sort(v2); 

    // replacing the elements whose modulo with K yields P 
    // with the sorted elements 
    for (int i = 0; i < v1.size(); i++) 
        arr[v1.get(i)] = v2.get(i); 

    // printing the new sorted array elements 
    for (int i = 0; i < n; i++) 
            System.out.print(arr[i]+" ");
} 

// Driver code 
public static void main(String[] args) 
{
    int arr[] = { 8, 255, 16, 2, 4, 0 }; 
    int n = arr.length; 
    int k = 2; 
    int p = 0; 

    sortWithRemainderP(arr, n, k, p);
    }
} 

// This code is contributed by 29AjayKumar
Python3
# Python 3 program for sorting array
# elements whose modulo with K yields P

# Function to sort elements whose modulo
# with K yields P
def sortWithRemainderP(arr, n, k, p):
    
    # initialise two vectors
    v1 = []
    v2 = []

    for i in range(0, n, 1):
        if (arr[i] % k == p):
            
            # first vector contains indices 
            # of required element
            v1.append(i)

            # second vector contains
            # required elements
            v2.append(arr[i])

    # sorting the elements in second vector
    v2.sort(reverse = False)

    # replacing the elements whose modulo 
    # with K yields P with the sorted elements
    for i in range(0, len(v1), 1):
        arr[v1[i]] = v2[i]

    # printing the new sorted array elements
    for i in range(0, n, 1):
        print(arr[i], end = " ")

# Driver code
if __name__ == '__main__':
    arr = [8, 255, 16, 2, 4, 0]
    n = len(arr)
    k = 2
    p = 0

    sortWithRemainderP(arr, n, k, p)
    
# This code is contributed by
# Sahil_Shelangia
C#
// C# program for sorting array elements 
// whose modulo with K yields P 
using System;
using System.Collections.Generic;

class GFG 
{

// Function to sort elements 
// whose modulo with K yields P 
static void sortWithRemainderP(int []arr, int n, 
                               int k, int p) 
{ 
    // initialise two vectors 
    List<int> v1 = new List<int>();
    List<int> v2 = new List<int>(); 

    for (int i = 0; i < n; i++)
    { 
        if (arr[i] % k == p) 
        { 

            // first vector contains indices of 
            // required element 
            v1.Add(i); 

            // second vector contains 
            // required elements 
            v2.Add(arr[i]); 
        } 
    } 

    // sorting the elements in second vector 
    v2.Sort(); 

    // replacing the elements whose modulo with 
    // K yields P with the sorted elements 
    for (int i = 0; i < v1.Count; i++) 
        arr[v1[i]] = v2[i]; 

    // printing the new sorted array elements 
    for (int i = 0; i < n; i++) 
        Console.Write(arr[i] + " ");
} 

// Driver code 
public static void Main(String[] args) 
{
    int []arr = { 8, 255, 16, 2, 4, 0 }; 
    int n = arr.Length; 
    int k = 2; 
    int p = 0; 

    sortWithRemainderP(arr, n, k, p);
}
}

// This code is contributed by PrinciRaj1992
PHP
<?php
// PHP program for sorting array elements
// whose modulo with K yields P

// Function to sort elements
// whose modulo with K yields P
function sortWithRemainderP($arr, $n, $k, $p)
{
    // initialise two vectors
    $v1 = array();
    $v2 = array();

    for ($i = 0; $i < $n; $i++) 
    {
        if ($arr[$i] % $k == $p)
        {

            // first vector contains indices of
            // required element
            array_push($v1, $i);

            // second vector contains
            // required elements
            array_push($v2, $arr[$i]);
        }
    }

    // sorting the elements in second vector
    sort($v2);

    // replacing the elements whose modulo with K 
    // yields P with the sorted elements
    for ($i = 0; $i < count($v1); $i++)
        $arr[$v1[$i]] = $v2[$i];

    // printing the new sorted array elements
    for ($i = 0; $i < $n; $i++)
        echo $arr[$i] . " ";
}

// Driver code
$arr = array( 8, 255, 16, 2, 4, 0 );
$n = count($arr);
$k = 2;
$p = 0;

sortWithRemainderP($arr, $n, $k, $p);

// This code is contributed by mits
?>
JavaScript
<script>


// Javascript program for sorting array elements
// whose modulo with K yields P

// Function to sort elements
// whose modulo with K yields P
function sortWithRemainderP(arr, n, k, p)
{
    // initialise two vectors
    var v1 = [], v2 = [];

    for (var i = 0; i < n; i++) {
        if (arr[i] % k == p) {

            // first vector contains indices of
            // required element
            v1.push(i);

            // second vector contains
            // required elements
            v2.push(arr[i]);
        }
    }

    // sorting the elements in second vector
    v2.sort((a,b)=> a-b)

    // replacing the elements whose modulo with K yields P
    // with the sorted elements
    for (var i = 0; i < v1.length; i++)
        arr[v1[i]] = v2[i];

    // printing the new sorted array elements
    for (var i = 0; i < n; i++)
        document.write( arr[i] + " ");
}

// Driver code
var arr = [8, 255, 16, 2, 4, 0 ];
var n = arr.length;
var k = 2;
var p = 0;
sortWithRemainderP(arr, n, k, p);

</script>   

Output
0 255 2 4 8 16 

Time Complexity: O(nlogn)


Next Article

Similar Reads