Smallest subarray from a given Array with sum greater than or equal to K | Set 2
Last Updated :
25 Apr, 2023
Given an array A[] consisting of N positive integers and an integer K, the task is to find the length of the smallest subarray with a sum greater than or equal to K. If no such subarray exists, print -1.
Examples:
Input: arr[] = {3, 1, 7, 1, 2}, K = 11
Output: 3
Explanation:
The smallest subarray with sum ? K(= 11) is {3, 1, 7}.
Input: arr[] = {2, 3, 5, 4, 1}, K = 11
Output: 3
Explanation:
The minimum possible subarray is {3, 5, 4}.
Naive and Binary Search Approach: Refer to Smallest subarray from a given Array with sum greater than or equal to K for the simplest approach and the Binary Search based approaches to solve the problem.
Recursive Approach: The simplest approach to solve the problem is to use Recursion. Follow the steps below to solve the problem:
- If K ? 0: Print -1 as no such subarray can be obtained.
- If the sum of the array is equal to K, print the length of the array as the required answer.
- If the first element in the array is greater than K, then print 1 as the required answer.
- Otherwise, proceed to find the smallest subarray both by considering the current element in the subarray as well as not including it.
- Repeat the above steps for every element traversed.
Below is the implementation of the above approach:
C++14
// C++14 program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find the smallest subarray
// sum greater than or equal to target
int smallSumSubset(vector<int> data,
int target, int maxVal)
{
int sum = 0;
for(int i : data)
sum += i;
// Base Case
if (target <= 0)
return 0;
// If sum of the array
// is less than target
else if (sum < target)
return maxVal;
// If target is equal to
// the sum of the array
else if (sum == target)
return data.size();
// Required condition
else if (data[0] >= target)
return 1;
else if (data[0] < target)
{
vector<int> temp;
for(int i = 1; i < data.size(); i++)
temp.push_back(data[i]);
return min(smallSumSubset(temp, target,
maxVal),
1 + smallSumSubset(temp, target -
data[0], maxVal));
}
}
// Driver Code
int main()
{
vector<int> data = { 3, 1, 7, 1, 2 };
int target = 11;
int val = smallSumSubset(data, target,
data.size() + 1);
if (val > data.size())
cout << -1;
else
cout << val;
}
// This code is contributed by mohit kumar 29
Java
// Java program for the above approach
import java.util.*;
import java.lang.*;
class GFG{
// Function to find the smallest subarray
// sum greater than or equal to target
static int smallSumSubset(List<Integer> data,
int target, int maxVal)
{
int sum = 0;
for(Integer i : data)
sum += i;
// Base Case
if (target <= 0)
return 0;
// If sum of the array
// is less than target
else if (sum < target)
return maxVal;
// If target is equal to
// the sum of the array
else if (sum == target)
return data.size();
// Required condition
else if (data.get(0) >= target)
return 1;
else if (data.get(0) < target)
{
List<Integer> temp = new ArrayList<>();
for(int i = 1; i < data.size(); i++)
temp.add(data.get(i));
return Math.min(smallSumSubset(temp, target,
maxVal),
1 + smallSumSubset(temp, target -
data.get(0), maxVal));
}
return -1;
}
// Driver Code
public static void main (String[] args)
{
List<Integer> data = Arrays.asList(3, 1, 7, 1, 2);
int target = 11;
int val = smallSumSubset(data, target,
data.size() + 1);
if (val > data.size())
System.out.println(-1);
else
System.out.println(val);
}
}
// This code is contributed by offbeat
Python3
# Python3 program for the above approach
# Function to find the smallest subarray
# sum greater than or equal to target
def smallSumSubset(data, target, maxVal):
# base condition
# Base Case
if target <= 0:
return 0
# If sum of the array
# is less than target
elif sum(data) < target:
return maxVal
# If target is equal to
# the sum of the array
elif sum(data) == target:
return len(data)
# Required condition
elif data[0] >= target:
return 1
elif data[0] < target:
return min(smallSumSubset(data[1:], \
target, maxVal),
1 + smallSumSubset(data[1:], \
target-data[0], maxVal))
# Driver Code
data = [3, 1, 7, 1, 2]
target = 11
val = smallSumSubset(data, target, len(data)+1)
if val > len(data):
print(-1)
else:
print(val)
C#
// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG{
// Function to find the smallest subarray
// sum greater than or equal to target
static int smallSumSubset(List<int> data,
int target, int maxVal)
{
int sum = 0;
foreach(int i in data)
sum += i;
// Base Case
if (target <= 0)
return 0;
// If sum of the array
// is less than target
else if (sum < target)
return maxVal;
// If target is equal to
// the sum of the array
else if (sum == target)
return data.Count;
// Required condition
else if (data[0] >= target)
return 1;
else if (data[0] < target)
{
List<int> temp = new List<int>();
for(int i = 1; i < data.Count; i++)
temp.Add(data[i]);
return Math.Min(smallSumSubset(temp, target,
maxVal),
1 + smallSumSubset(temp, target -
data[0], maxVal));
}
return 0;
}
// Driver code
static void Main()
{
List<int> data = new List<int>();
data.Add(3);
data.Add(1);
data.Add(7);
data.Add(1);
data.Add(2);
int target = 11;
int val = smallSumSubset(data, target,
data.Count + 1);
if (val > data.Count)
Console.Write(-1);
else
Console.Write(val);
}
}
// This code is contributed by divyeshrabadiya07
JavaScript
<script>
// js program for the above approach
// Function to find the smallest subarray
// sum greater than or equal to target
function smallSumSubset(data, target, maxVal)
{
let sum = 0;
for(let i=0;i< data.length;i++)
sum += data[i];
// Base Case
if (target <= 0)
return 0;
// If sum of the array
// is less than target
else if (sum < target)
return maxVal;
// If target is equal to
// the sum of the array
else if (sum == target)
return data.length;
// Required condition
else if (data[0] >= target)
return 1;
else if (data[0] < target)
{
let temp = [];
for(let i = 1; i < data.length; i++)
temp.push(data[i]);
return Math.min(smallSumSubset(temp, target,
maxVal),
1 + smallSumSubset(temp, target -
data[0], maxVal));
}
}
// Driver Code
let data = [ 3, 1, 7, 1, 2 ];
let target = 11;
let val = smallSumSubset(data, target,
data.length + 1);
if (val > data.length)
document.write( -1);
else
document.write(val);
</script>
Time Complexity: O(2N)
Auxiliary Space: O(N)
Efficient Approach: The above approach can be optimized using Dynamic programming by memorizing the subproblems to avoid re-computation.
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include<bits/stdc++.h>
using namespace std;
// Function to find the smallest subarray
// with sum greater than or equal target
int minlt(vector<int> arr, int target, int n)
{
// DP table to store the
// computed subproblems
vector<vector<int>> dp(arr.size() + 1 ,
vector<int> (target + 1, -1));
for(int i = 0; i < arr.size() + 1; i++)
// Initialize first
// column with 0
dp[i][0] = 0;
for(int j = 0; j < target + 1; j++)
// Initialize first
// row with 0
dp[0][j] = INT_MAX;
for(int i = 1; i <= arr.size(); i++)
{
for(int j = 1; j <= target; j++)
{
// Check for invalid condition
if (arr[i - 1] > j)
{
dp[i][j] = dp[i - 1][j];
}
else
{
// Fill up the dp table
dp[i][j] = min(dp[i - 1][j],
(dp[i][j - arr[i - 1]]) !=
INT_MAX ?
(dp[i][j - arr[i - 1]] + 1) :
INT_MAX);
}
}
}
// Print the minimum length
if (dp[arr.size()][target] == INT_MAX)
{
return -1;
}
else
{
return dp[arr.size()][target];
}
}
// Driver code
int main()
{
vector<int> arr = { 2, 3, 5, 4, 1 };
int target = 11;
int n = arr.size();
cout << minlt(arr, target, n);
}
// This code is contributed by Surendra_Gangwar
Java
// Java program for the above approach
import java.util.*;
class GFG{
// Function to find the smallest subarray
// with sum greater than or equal target
static int minlt(int[] arr, int target, int n)
{
// DP table to store the
// computed subproblems
int[][] dp = new int[arr.length + 1][target + 1];
for(int[] row : dp)
Arrays.fill(row, -1);
for(int i = 0; i < arr.length + 1; i++)
// Initialize first
// column with 0
dp[i][0] = 0;
for(int j = 0; j < target + 1; j++)
// Initialize first
// row with 0
dp[0][j] = Integer.MAX_VALUE;
for(int i = 1; i <= arr.length; i++)
{
for(int j = 1; j <= target; j++)
{
// Check for invalid condition
if (arr[i - 1] > j)
{
dp[i][j] = dp[i - 1][j];
}
else
{
// Fill up the dp table
dp[i][j] = Math.min(dp[i - 1][j],
(dp[i][j - arr[i - 1]]) !=
Integer.MAX_VALUE ?
(dp[i][j - arr[i - 1]] + 1) :
Integer.MAX_VALUE);
}
}
}
// Print the minimum length
if (dp[arr.length][target] == Integer.MAX_VALUE)
{
return -1;
}
else
{
return dp[arr.length][target];
}
}
// Driver code
public static void main (String[] args)
{
int[] arr = { 2, 3, 5, 4, 1 };
int target = 11;
int n = arr.length;
System.out.print(minlt(arr, target, n));
}
}
// This code is contributed by offbeat
Python3
# Python3 program for the above approach
import sys
# Function to find the smallest subarray
# with sum greater than or equal target
def minlt(arr, target, n):
# DP table to store the
# computed subproblems
dp = [[-1 for _ in range(target + 1)]\
for _ in range(len(arr)+1)]
for i in range(len(arr)+1):
# Initialize first
# column with 0
dp[i][0] = 0
for j in range(target + 1):
# Initialize first
# row with 0
dp[0][j] = sys.maxsize
for i in range(1, len(arr)+1):
for j in range(1, target + 1):
# Check for invalid condition
if arr[i-1] > j:
dp[i][j] = dp[i-1][j]
else:
# Fill up the dp table
dp[i][j] = min(dp[i-1][j], \
1 + dp[i][j-arr[i-1]])
return dp[-1][-1]
# Print the minimum length
if dp[-1][-1] == sys.maxsize:
return(-1)
else:
return dp[-1][-1]
# Driver Code
arr = [2, 3, 5, 4, 1]
target = 11
n = len(arr)
print(minlt(arr, target, n))
C#
// C# program for the
// above approach
using System;
class GFG{
// Function to find the
// smallest subarray with
// sum greater than or equal
// target
static int minlt(int[] arr,
int target,
int n)
{
// DP table to store the
// computed subproblems
int[,] dp = new int[arr.Length + 1,
target + 1];
for(int i = 0;
i < arr.Length + 1; i++)
{
for (int j = 0;
j < target + 1; j++)
{
dp[i, j] = -1;
}
}
for(int i = 0;
i < arr.Length + 1; i++)
// Initialize first
// column with 0
dp[i, 0] = 0;
for(int j = 0;
j < target + 1; j++)
// Initialize first
// row with 0
dp[0, j] = int.MaxValue;
for(int i = 1;
i <= arr.Length; i++)
{
for(int j = 1;
j <= target; j++)
{
// Check for invalid
// condition
if (arr[i - 1] > j)
{
dp[i, j] = dp[i - 1, j];
}
else
{
// Fill up the dp table
dp[i, j] = Math.Min(dp[i - 1, j],
(dp[i, j -
arr[i - 1]]) !=
int.MaxValue ?
(dp[i, j -
arr[i - 1]] + 1) :
int.MaxValue);
}
}
}
// Print the minimum
// length
if (dp[arr.Length,
target] == int.MaxValue)
{
return -1;
}
else
{
return dp[arr.Length,
target];
}
}
// Driver code
public static void Main(String[] args)
{
int[] arr = {2, 3, 5, 4, 1};
int target = 11;
int n = arr.Length;
Console.Write(
minlt(arr, target, n));
}
}
// This code is contributed by gauravrajput1
JavaScript
<script>
// JavaScript program for the above approach
// Function to find the smallest subarray
// with sum greater than or equal target
function minlt(arr, target, n)
{
// DP table to store the
// computed subproblems
var dp = Array.from(Array(arr.length+1),
()=>Array(target+1).fill(-1));
for(var i = 0; i < arr.length + 1; i++)
// Initialize first
// column with 0
dp[i][0] = 0;
for(var j = 0; j < target + 1; j++)
// Initialize first
// row with 0
dp[0][j] = 1000000000;
for(var i = 1; i <= arr.length; i++)
{
for(var j = 1; j <= target; j++)
{
// Check for invalid condition
if (arr[i - 1] > j)
{
dp[i][j] = dp[i - 1][j];
}
else
{
// Fill up the dp table
dp[i][j] = Math.min(dp[i - 1][j],
(dp[i][j - arr[i - 1]]) !=
1000000000 ?
(dp[i][j - arr[i - 1]] + 1) :
1000000000);
}
}
}
// Print the minimum length
if (dp[arr.length][target] == 1000000000)
{
return -1;
}
else
{
return dp[arr.length][target];
}
}
// Driver code
var arr = [2, 3, 5, 4, 1];
var target = 11;
var n = arr.length;
document.write( minlt(arr, target, n));
</script>
Time Complexity: O(N*Target)
Auxiliary Space: O(N*Target)
Efficient approach: Space Optimization
In the previous approach, the dp[i][j] is depend upon the previous row and current row values but it is using space of n* target 2D matrix. So to optimize the space complexity we use a 1D vector of size target + 1 just to store the previous and current computation.
Steps that were to follow the above approach:
- Create a vector 'dp' of size target+1 and initialize all values to -1.
- Initialize the first element of 'dp' to 0, since a sum of 0 can be achieved by selecting no elements.
- Loop through the array 'arr' from the second element to the last, and for each element:
- Loop through the 'dp' vector from 'target' down to 1.
- If the current element of 'arr' is greater than the current index of 'dp', continue to the next index.
- If the current index of 'dp' minus the current element of 'arr' is not equal to -1, update 'dp' with the minimum value between the current value of 'dp' at the
- current index and 'dp' at the current index minus the current element of 'arr' plus 1.
- At last return the final answer stored in dp[target].
Below is the code to implement the above steps:
C++
// C++ code above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find the smallest subarray
// with sum greater than or equal target
int minlt(vector<int> arr, int target, int n)
{
// DP table to store the
// computed subproblems
vector<int> dp(target + 1, -1);
// Initialize first column with 0
dp[0] = 0;
for (int i = 1; i <= n; i++) {
for (int j = target; j >= 1; j--) {
// Check for invalid condition
if (arr[i - 1] > j) {
continue;
}
else {
// Fill up the dp table
if (dp[j - arr[i - 1]] != -1) {
if (dp[j] == -1) {
dp[j] = dp[j - arr[i - 1]] + 1;
}
else {
dp[j] = min(dp[j],
dp[j - arr[i - 1]] + 1);
}
}
}
}
}
// Print the minimum length
return dp[target];
}
// Driver code
int main()
{
vector<int> arr = { 2, 3, 5, 4, 1 };
int target = 11;
int n = arr.size();
cout << minlt(arr, target, n);
return 0;
}
Java
import java.util.*;
public class Main {
// Function to find the smallest subarray
// with sum greater than or equal target
public static int minlt(List<Integer> arr, int target, int n) {
// DP table to store the
// computed subproblems
int[] dp = new int[target + 1];
Arrays.fill(dp, -1);
// Initialize first column with 0
dp[0] = 0;
for (int i = 1; i <= n; i++) {
for (int j = target; j >= 1; j--) {
// Check for invalid condition
if (arr.get(i - 1) > j) {
continue;
} else {
// Fill up the dp table
if (dp[j - arr.get(i - 1)] != -1) {
if (dp[j] == -1) {
dp[j] = dp[j - arr.get(i - 1)] + 1;
} else {
dp[j] = Math.min(dp[j], dp[j - arr.get(i - 1)] + 1);
}
}
}
}
}
// Print the minimum length
return dp[target];
}
// Driver code
public static void main(String[] args) {
List<Integer> arr = Arrays.asList(2, 3, 5, 4, 1);
int target = 11;
int n = arr.size();
System.out.println(minlt(arr, target, n));
}
}
Python3
def min_subarray_with_sum(arr, target_sum):
n = len(arr)
# DP table to store the computed subproblems
dp = [-1] * (target_sum + 1)
# Initialize first column with 0
dp[0] = 0
for i in range(1, n + 1):
for j in range(target_sum, 0, -1):
# Check for invalid condition
if arr[i - 1] > j:
continue
else:
# Fill up the dp table
if dp[j - arr[i - 1]] != -1:
if dp[j] == -1:
dp[j] = dp[j - arr[i - 1]] + 1
else:
dp[j] = min(dp[j], dp[j - arr[i - 1]] + 1)
# Return the minimum length
return dp[target_sum]
# Example usage:
arr = [2, 3, 5, 4, 1]
target_sum = 11
print(min_subarray_with_sum(arr, target_sum))
C#
using System;
namespace ConsoleApp1
{
class Program
{
// Function to find the smallest subarray
// with sum greater than or equal target
static int minlt(int[] arr, int target, int n)
{
// DP table to store the
// computed subproblems
int[] dp = new int[target + 1];
Array.Fill(dp, -1);
// Initialize first column with 0
dp[0] = 0;
for (int i = 1; i <= n; i++)
{
for (int j = target; j >= 1; j--)
{
// Check for invalid condition
if (arr[i - 1] > j)
{
continue;
}
else
{
// Fill up the dp table
if (dp[j - arr[i - 1]] != -1)
{
if (dp[j] == -1)
{
dp[j] = dp[j - arr[i - 1]] + 1;
}
else
{
dp[j] = Math.Min(dp[j], dp[j - arr[i - 1]] + 1);
}
}
}
}
}
// Print the minimum length
return dp[target];
}
// Driver code
static void Main(string[] args)
{
int[] arr = { 2, 3, 5, 4, 1 };
int target = 11;
int n = arr.Length;
Console.WriteLine(minlt(arr, target, n));
}
}
}
JavaScript
// Javascript code above approach
// Function to find the smallest subarray
// with sum greater than or equal target
function minlt(arr, target, n) {
// DP table to store the
// computed subproblems
let dp = new Array(target + 1).fill(-1);
// Initialize first column with 0
dp[0] = 0;
for (let i = 1; i <= n; i++) {
for (let j = target; j >= 1; j--) {
// Check for invalid condition
if (arr[i - 1] > j) {
continue;
}
else {
// Fill up the dp table
if (dp[j - arr[i - 1]] != -1) {
if (dp[j] == -1) {
dp[j] = dp[j - arr[i - 1]] + 1;
}
else {
dp[j] = Math.min(dp[j], dp[j - arr[i - 1]] + 1);
}
}
}
}
}
// Print the minimum length
return dp[target];
}
// Driver code
let arr = [ 2, 3, 5, 4, 1 ];
let target = 11;
let n = arr.length;
console.log(minlt(arr, target, n));
Output
3
Time Complexity: O(N*target)
Auxiliary Space: O(N*Target)
Similar Reads
Smallest subarray with sum greater than or equal to K
Given an array A[] consisting of N integers and an integer K, the task is to find the length of the smallest subarray with sum greater than or equal to K. If no such subarray exists, print -1. Examples: Input: A[] = {2, -1, 2}, K = 3 Output: 3 Explanation: Sum of the given array is 3. Hence, the sm
15+ min read
Smallest subarray of size greater than K with sum greater than a given value
Given an array, arr[] of size N, two positive integers K and S, the task is to find the length of the smallest subarray of size greater than K, whose sum is greater than S. Examples: Input: arr[] = {1, 2, 3, 4, 5}, K = 1, S = 8Output: 2Explanation: Smallest subarray with sum greater than S(=8) is {4
15 min read
Smallest subarray such that all elements are greater than K
Given an array of N integers and a number K, the task is to find the length of the smallest subarray in which all the elements are greater than K. If there is no such subarray possible, then print -1. Examples: Input: a[] = {3, 4, 5, 6, 7, 2, 10, 11}, K = 5 Output: 1 The subarray is {10} Input: a[]
4 min read
Length of Smallest subarray in range 1 to N with sum greater than a given value
Given two numbers N and S, the task is to find the length of smallest subarray in range (1, N) such that the sum of those chosen numbers is greater than S. Examples: Input: N = 5, S = 11 Output: 3 Explanation: Smallest subarray with sum > 11 = {5, 4, 3} Input: N = 4, S = 7 Output: 3 Explanation:
9 min read
Sum of length of two smallest subsets possible from a given array with sum at least K
Given an array arr[] consisting of N integers and an integer K, the task is to find the sum of the length of the two smallest unique subsets having sum of its elements at least K. Examples: Input: arr[] = {2, 4, 5, 6, 7, 8}, K = 16Output: 6Explanation:The subsets {2, 6, 8} and {4, 5, 7} are the two
15+ min read
Smallest Subarray with Sum K from an Array
Given an array arr[] consisting of N integers, the task is to find the length of the Smallest subarray with a sum equal to K. Examples: Input: arr[] = {2, 4, 6, 10, 2, 1}, K = 12 Output: 2 Explanation: All possible subarrays with sum 12 are {2, 4, 6} and {10, 2}. Input: arr[] = {-8, -8, -3, 8}, K =
10 min read
Size of smallest subarray to be removed to make count of array elements greater and smaller than K equal
Given an integer K and an array arr[] consisting of N integers, the task is to find the length of the subarray of smallest possible length to be removed such that the count of array elements smaller than and greater than K in the remaining array are equal. Examples: Input: arr[] = {5, 7, 2, 8, 7, 4,
10 min read
Find k pairs with smallest sums in two arrays | Set 2
Given two arrays arr1[] and arr2[] sorted in ascending order and an integer K. The task is to find k pairs with the smallest sums such that one element of a pair belongs to arr1[] and another element belongs to arr2[]. The sizes of arrays may be different. Assume all the elements to be distinct in e
15+ min read
Find an array of size N having exactly K subarrays with sum S
Given three integers N, K and S, the task is to choose an array of size N such that there exists exactly K sub-arrays with sum S.Note: There can be many solution arrays to this problem.Examples: Input: N = 4, K = 2, S = 3 Output: 1 2 3 4 Explanation: One of the possible array is [ 1, 2, 3, 4 ] There
4 min read
Find a number K such that Array contains at least K numbers greater than or equal to K
Given an array arr[] of non-negative integers of size N, the task is to find an integer H such that at least K integers in the array are greater or equal to K.Examples: Input: arr[] = [3, 0, 6, 1, 5] Output: 3 Explanation: There are 3 number greater than or equal to 3 in the array i.e. 3, 6 and 5.In
4 min read