Sink Odd nodes in Binary Tree
Last Updated :
26 Feb, 2023
Given a Binary Tree having odd and even elements, sink all its odd valued nodes such that no node with odd value could be parent of node with even value. There can be multiple outputs for a given tree, we need to print one of them. It is always possible to convert a tree (Note that a node with even nodes and all odd nodes follows the rule)
Input :
1
/ \
2 3
Output
2 2
/ \ OR / \
1 3 3 1
Input :
1
/ \
5 8
/ \ / \
2 4 9 10
Output :
2 4
/ \ / \
4 8 OR 2 8 OR .. (any tree with
/ \ / \ / \ / \ same keys and
5 1 9 10 5 1 9 10 no odd is parent
of even)
We strongly recommend you to minimize your browser and try this yourself first.
Basically, we need to swap odd value of a node with even value of one of its descendants. The idea is to traverse the tree in a postorder fashion. Since we process in postorder, for each odd node encountered, its left and right subtrees are already balanced (sinked), we check if it's an odd node and its left or right child has an even value. If even value is found, we swap the node’s data with that of even child node and call the procedure on the even child to balance the subtree. If both children have odd values, that means that all its descendants are odd.
Below is the implementation of the idea.
Implementation:
C++
// Program to sink odd nodes to the bottom of
// binary tree
#include<bits/stdc++.h>
using namespace std;
// A binary tree node
struct Node
{
int data;
Node* left, *right;
};
// Helper function to allocates a new node
Node* newnode(int data)
{
Node* node = new Node;
node->data = data;
node->left = node->right = NULL;
return node;
}
// Helper function to check if node is leaf node
bool isLeaf(Node *root)
{
return (root->left == NULL && root->right == NULL);
}
// A recursive method to sink a tree with odd root
// This method assumes that the subtrees are already
// sinked. This method is similar to Heapify of
// Heap-Sort
void sink(Node *&root)
{
// If NULL or is a leaf, do nothing
if (root == NULL || isLeaf(root))
return;
// if left subtree exists and left child is even
if (root->left && !(root->left->data & 1))
{
// swap root's data with left child and
// fix left subtree
swap(root->data, root->left->data);
sink(root->left);
}
// if right subtree exists and right child is even
else if(root->right && !(root->right->data & 1))
{
// swap root's data with right child and
// fix right subtree
swap(root->data, root->right->data);
sink(root->right);
}
}
// Function to sink all odd nodes to the bottom of binary
// tree. It does a postorder traversal and calls sink()
// if any odd node is found
void sinkOddNodes(Node* &root)
{
// If NULL or is a leaf, do nothing
if (root == NULL || isLeaf(root))
return;
// Process left and right subtrees before this node
sinkOddNodes(root->left);
sinkOddNodes(root->right);
// If root is odd, sink it
if (root->data & 1)
sink(root);
}
// Helper function to do Level Order Traversal of
// Binary Tree level by level. This function is used
// here only for showing modified tree.
void printLevelOrder(Node* root)
{
queue<Node*> q;
q.push(root);
// Do Level order traversal
while (!q.empty())
{
int nodeCount = q.size();
// Print one level at a time
while (nodeCount)
{
Node *node = q.front();
printf("%d ", node->data);
q.pop();
if (node->left != NULL)
q.push(node->left);
if (node->right != NULL)
q.push(node->right);
nodeCount--;
}
// Line separator for levels
printf("\n");
}
}
// Driver program to test above functions
int main()
{
/* Constructed binary tree is
1
/ \
5 8
/ \ / \
2 4 9 10 */
Node *root = newnode(1);
root->left = newnode(5);
root->right = newnode(8);
root->left->left = newnode(2);
root->left->right = newnode(4);
root->right->left = newnode(9);
root->right->right = newnode(10);
sinkOddNodes(root);
printf("Level order traversal of modified tree\n");
printLevelOrder(root);
return 0;
}
Java
// Java program to sink odd nodes to the bottom of
// binary tree
import java.util.*;
class GFG
{
// A binary tree node
static class Node
{
int data;
Node left, right;
};
// returns a new tree Node
static Node newnode(int data)
{
Node temp = new Node();
temp.data = data;
temp.left = temp.right = null;
return temp;
}
// Helper function to check if node is leaf node
static boolean isLeaf(Node root)
{
if(root==null){
return false;
}
return (root.left == null && root.right == null)?true:false;
}
// A recursive method to sink a tree with odd root
// This method assumes that the subtrees are already
// sinked. This method is similar to Heapify of
// Heap-Sort
static void sink(Node root)
{
// If NULL or is a leaf, do nothing
if (root == null || isLeaf(null))
return;
// if left subtree exists and left child is even
if (root.left!=null && (root.left.data & 1)==0)
{
// swap root's data with left child and
// fix left subtree
int temp = root.data;
root.data=root.left.data;
root.left.data=temp;
sink(root.left);
}
// if right subtree exists and right child is even
else if(root.right!=null && (root.right.data & 1)==0)
{
// swap root's data with right child and
// fix right subtree
int temp = root.data;
root.data=root.right.data;
root.right.data=temp;
sink(root.right);
}
}
// Function to sink all odd nodes to the bottom of binary
// tree. It does a postorder traversal and calls sink()
// if any odd node is found
static void sinkOddNodes(Node root)
{
// If NULL or is a leaf, do nothing
if (root == null || isLeaf(root))
return;
// Process left and right subtrees before this node
sinkOddNodes(root.left);
sinkOddNodes(root.right);
// If root is odd, sink it
if ((root.data & 1)!=0)
sink(root);
}
// Helper function to do Level Order Traversal of
// Binary Tree level by level. This function is used
// here only for showing modified tree.
static void printLevelOrder(Node root)
{
Queue<Node> q = new LinkedList<>();
q.add(root);
// Do Level order traversal
while (!q.isEmpty())
{
int nodeCount = q.size();
// Print one level at a time
while (nodeCount>0)
{
Node node = q.poll();
System.out.print(node.data+" ");
if (node.left != null)
q.add(node.left);
if (node.right != null)
q.add(node.right);
nodeCount--;
}
// Line separator for levels
System.out.println("");
}
}
// Driver code
public static void main(String[] args)
{
/* Constructed binary tree is
1
/ \
5 8
/ \ / \
2 4 9 10 */
Node root = newnode(1);
root.left = newnode(5);
root.right = newnode(8);
root.left.left = newnode(2);
root.left.right = newnode(4);
root.right.left = newnode(9);
root.right.right = newnode(10);
sinkOddNodes(root);
System.out.print("Level order traversal of modified tree\n");
printLevelOrder(root);
}
}
/* This code is contributed by shruti456rawal */
Python3
# Python3 program to sink odd nodes
# to the bottom of binary tree
# A binary tree node
# Helper function to allocates a new node
class newnode:
# Constructor to create a new node
def __init__(self, key):
self.data = key
self.left = None
self.right = None
# Helper function to check
# if node is leaf node
def isLeaf(root):
return (root.left == None and
root.right == None)
# A recursive method to sink a tree with odd root
# This method assumes that the subtrees are
# already sinked. This method is similar to
# Heapify of Heap-Sort
def sink(root):
# If None or is a leaf, do nothing
if (root == None or isLeaf(root)):
return
# if left subtree exists and
# left child is even
if (root.left and not(root.left.data & 1)):
# swap root's data with left child
# and fix left subtree
root.data, \
root.left.data = root.left.data, \
root.data
sink(root.left)
# if right subtree exists and
# right child is even
else if(root.right and not(root.right.data & 1)):
# swap root's data with right child
# and fix right subtree
root.data, \
root.right.data = root.right.data, \
root.data
sink(root.right)
# Function to sink all odd nodes to
# the bottom of binary tree. It does
# a postorder traversal and calls sink()
# if any odd node is found
def sinkOddNodes(root):
# If None or is a leaf, do nothing
if (root == None or isLeaf(root)):
return
# Process left and right subtrees
# before this node
sinkOddNodes(root.left)
sinkOddNodes(root.right)
# If root is odd, sink it
if (root.data & 1):
sink(root)
# Helper function to do Level Order Traversal
# of Binary Tree level by level. This function
# is used here only for showing modified tree.
def printLevelOrder(root):
q = []
q.append(root)
# Do Level order traversal
while (len(q)):
nodeCount = len(q)
# Print one level at a time
while (nodeCount):
node = q[0]
print(node.data, end = " ")
q.pop(0)
if (node.left != None):
q.append(node.left)
if (node.right != None):
q.append(node.right)
nodeCount -= 1
# Line separator for levels
print()
# Driver Code
""" Constructed binary tree is
1
/ \
5 8
/ \ / \
2 4 9 10 """
root = newnode(1)
root.left = newnode(5)
root.right = newnode(8)
root.left.left = newnode(2)
root.left.right = newnode(4)
root.right.left = newnode(9)
root.right.right = newnode(10)
sinkOddNodes(root)
print("Level order traversal of modified tree")
printLevelOrder(root)
# This code is contributed by SHUBHAMSINGH10
C#
using System;
using System.Collections.Generic;
class GFG {
// A binary tree node
class Node {
public int data;
public Node left, right;
};
// returns a new tree Node
static Node newNode(int data)
{
Node temp = new Node();
temp.data = data;
temp.left = temp.right = null;
return temp;
}
// Helper function to check if node is leaf node
static bool isLeaf(Node root)
{
if (root == null) {
return false;
}
return (root.left == null && root.right == null)
? true
: false;
}
// A recursive method to sink a tree with odd root
// This method assumes that the subtrees are already
// sinked. This method is similar to Heapify of
// Heap-Sort
static void sink(Node root)
{
// If NULL or is a leaf, do nothing
if (root == null || isLeaf(null))
return;
// if left subtree exists and left child is even
if (root.left != null
&& (root.left.data & 1) == 0) {
// swap root's data with left child and
// fix left subtree
int temp = root.data;
root.data = root.left.data;
root.left.data = temp;
sink(root.left);
}
// if right subtree exists and right child is even
else if (root.right != null
&& (root.right.data & 1) == 0) {
// swap root's data with right child and
// fix right subtree
int temp = root.data;
root.data = root.right.data;
root.right.data = temp;
sink(root.right);
}
}
// Function to sink all odd nodes to the bottom of
// binary tree. It does a postorder traversal and calls
// sink() if any odd node is found
static void sinkOddNodes(Node root)
{
// If NULL or is a leaf, do nothing
if (root == null || isLeaf(root))
return;
// Process left and right subtrees before this node
sinkOddNodes(root.left);
sinkOddNodes(root.right);
// If root is odd, sink it
if ((root.data & 1) != 0)
sink(root);
}
// Helper function to do Level Order Traversal of
// Binary Tree level by level. This function is used
// here only for showing modified tree.
static void printLevelOrder(Node root)
{
Queue<Node> q = new Queue<Node>();
q.Enqueue(root);
// Do Level order traversal
while (q.Count != 0) {
int nodeCount = q.Count;
while (nodeCount > 0) {
Node node = q.Dequeue();
Console.Write(node.data + " ");
if (node.left != null)
q.Enqueue(node.left);
if (node.right != null)
q.Enqueue(node.right);
nodeCount--;
}
Console.WriteLine("");
}
}
static void Main(string[] args)
{
/* Constructed binary tree is
1
/ \
5 8
/ \ / \
2 4 9 10 */
Node root = newNode(1);
root.left = newNode(5);
root.right = newNode(8);
root.left.left = newNode(2);
root.left.right = newNode(4);
root.right.left = newNode(9);
root.right.right = newNode(10);
sinkOddNodes(root);
Console.WriteLine(
"Level order traversal of modified tree");
printLevelOrder(root);
}
}
JavaScript
<script>
class Node {
constructor(data) {
this.data = data;
this.left = null;
this.right = null;
}
}
// Helper function to check
// if node is leaf node
function isLeaf(root) {
return (root.left === null && root.right === null);
}
// A recursive method to sink a tree with odd root
// This method assumes that the subtrees are
// already sinked. This method is similar to
// Heapify of Heap-Sort
function sink(root) {
// If None or is a leaf, do nothing
if (root === null || isLeaf(root)) {
return;
}
// if left subtree exists and
// left child is even
if (root.left && !(root.left.data & 1)) {
// swap root's data with left child
// and fix left subtree
[root.data, root.left.data] = [root.left.data, root.data];
sink(root.left);
}
// if right subtree exists and
// right child is even
else if (root.right && !(root.right.data & 1)) {
// swap root's data with right child
// and fix right subtree
[root.data, root.right.data] = [root.right.data, root.data];
sink(root.right);
}
}
// Function to sink all odd nodes to
// the bottom of binary tree. It does
// a postorder traversal and calls sink()
// if any odd node is found
function sinkOddNodes(root) {
// If None or is a leaf, do nothing
if (root === null || isLeaf(root)) {
return;
}
// Process left and right subtrees
// before this node
sinkOddNodes(root.left);
sinkOddNodes(root.right);
// If root is odd, sink it
if (root.data & 1) {
sink(root);
}
}
// Helper function to do Level Order Traversal
// of Binary Tree level by level. This function
// is used here only for showing modified tree.
function printLevelOrder(root) {
let q = [];
q.push(root);
// Do Level order traversal
while (q.length) {
let nodeCount = q.length;
// Print one level at a time
while (nodeCount) {
let node = q[0];
document.write(node.data+ " ");
q.shift();
if (node.left !== null) {
q.push(node.left);
}
if (node.right !== null) {
q.push(node.right);
}
nodeCount -= 1;
}
// Line separator for levels
document.write("<br>")
}
}
// Driver Code
/* Constructed binary tree is
1
/ \
5 8
/ \ / \
2 4 9 10 */
let root = new Node(1);
root.left = new Node(5);
root.right = new Node(8);
root.left.left = new Node(2);
root.left.right = new Node(4);
root.right.left = new Node(9);
root.right.right = new Node(10);
sinkOddNodes(root);
document.write("Level order traversal of modified tree");
document.write("<br>")
printLevelOrder(root);
</script>
OutputLevel order traversal of modified tree
2
4 8
5 1 9 10
Time Complexity:O(N), where N is total number of nodes in binary tree.
Space Complexity: O(N), where N is total number of nodes in binary tree
Sink Odd nodes in Binary Tree
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem