Recursive selection sort for singly linked list | Swapping node links
Last Updated :
14 Jul, 2022
Given a singly linked list containing n nodes. The problem is to sort the list using the recursive selection sort technique. The approach should be such that it involves swapping node links instead of swapping node data.

Examples:
Input : 10 -> 12 -> 8 -> 4 -> 6
Output : 4 -> 6 -> 8 -> 10 -> 12
In Selection Sort, we first find the minimum element, swap it with the beginning node and recur for the remaining list. Below is the recursive implementation of these steps for the linked list.
recurSelectionSort(head)
if head->next == NULL
return head
Initialize min = head
Initialize beforeMin = NULL
Initialize ptr = head
while ptr->next != NULL
if min->data > ptr->next->data
min = ptr->next
beforeMin = ptr
ptr = ptr->next
if min != head
swapNodes(&head, head, min, beforeMin)
head->next = recurSelectionSort(head->next)
return head
swapNodes(head_ref, currX, currY, prevY)
head_ref = currY
prevY->next = currX
Initialize temp = currY->next
currY->next = currX->next
currX->next = temp
The swapNodes(head_ref, currX, currY, prevY) is based on the approach discussed here but it has been modified accordingly for the implementation of this post.
Implementation:
C++
// C++ implementation of recursive selection sort
// for singly linked list | Swapping node links
#include <bits/stdc++.h>
using namespace std;
// A Linked list node
struct Node {
int data;
struct Node* next;
};
// function to swap nodes 'currX' and 'currY' in a
// linked list without swapping data
void swapNodes(struct Node** head_ref, struct Node* currX,
struct Node* currY, struct Node* prevY)
{
// make 'currY' as new head
*head_ref = currY;
// adjust links
prevY->next = currX;
// Swap next pointers
struct Node* temp = currY->next;
currY->next = currX->next;
currX->next = temp;
}
// function to sort the linked list using
// recursive selection sort technique
struct Node* recurSelectionSort(struct Node* head)
{
// if there is only a single node
if (head->next == NULL)
return head;
// 'min' - pointer to store the node having
// minimum data value
struct Node* min = head;
// 'beforeMin' - pointer to store node previous
// to 'min' node
struct Node* beforeMin = NULL;
struct Node* ptr;
// traverse the list till the last node
for (ptr = head; ptr->next != NULL; ptr = ptr->next) {
// if true, then update 'min' and 'beforeMin'
if (ptr->next->data < min->data) {
min = ptr->next;
beforeMin = ptr;
}
}
// if 'min' and 'head' are not same,
// swap the head node with the 'min' node
if (min != head)
swapNodes(&head, head, min, beforeMin);
// recursively sort the remaining list
head->next = recurSelectionSort(head->next);
return head;
}
// function to sort the given linked list
void sort(struct Node** head_ref)
{
// if list is empty
if ((*head_ref) == NULL)
return;
// sort the list using recursive selection
// sort technique
*head_ref = recurSelectionSort(*head_ref);
}
// function to insert a node at the
// beginning of the linked list
void push(struct Node** head_ref, int new_data)
{
// allocate node
struct Node* new_node =
(struct Node*)malloc(sizeof(struct Node));
// put in the data
new_node->data = new_data;
// link the old list to the new node
new_node->next = (*head_ref);
// move the head to point to the new node
(*head_ref) = new_node;
}
// function to print the linked list
void printList(struct Node* head)
{
while (head != NULL) {
cout << head->data << " ";
head = head->next;
}
}
// Driver program to test above
int main()
{
struct Node* head = NULL;
// create linked list 10->12->8->4->6
push(&head, 6);
push(&head, 4);
push(&head, 8);
push(&head, 12);
push(&head, 10);
cout << "Linked list before sorting:n";
printList(head);
// sort the linked list
sort(&head);
cout << "\nLinked list after sorting:n";
printList(head);
return 0;
}
Java
// Java implementation of recursive selection sort
// for singly linked list | Swapping node links
class GFG
{
// A Linked list node
static class Node
{
int data;
Node next;
};
// function to swap nodes 'currX' and 'currY' in a
// linked list without swapping data
static Node swapNodes( Node head_ref, Node currX,
Node currY, Node prevY)
{
// make 'currY' as new head
head_ref = currY;
// adjust links
prevY.next = currX;
// Swap next pointers
Node temp = currY.next;
currY.next = currX.next;
currX.next = temp;
return head_ref;
}
// function to sort the linked list using
// recursive selection sort technique
static Node recurSelectionSort( Node head)
{
// if there is only a single node
if (head.next == null)
return head;
// 'min' - pointer to store the node having
// minimum data value
Node min = head;
// 'beforeMin' - pointer to store node previous
// to 'min' node
Node beforeMin = null;
Node ptr;
// traverse the list till the last node
for (ptr = head; ptr.next != null; ptr = ptr.next)
{
// if true, then update 'min' and 'beforeMin'
if (ptr.next.data < min.data)
{
min = ptr.next;
beforeMin = ptr;
}
}
// if 'min' and 'head' are not same,
// swap the head node with the 'min' node
if (min != head)
head = swapNodes(head, head, min, beforeMin);
// recursively sort the remaining list
head.next = recurSelectionSort(head.next);
return head;
}
// function to sort the given linked list
static Node sort( Node head_ref)
{
// if list is empty
if ((head_ref) == null)
return null;
// sort the list using recursive selection
// sort technique
head_ref = recurSelectionSort(head_ref);
return head_ref;
}
// function to insert a node at the
// beginning of the linked list
static Node push( Node head_ref, int new_data)
{
// allocate node
Node new_node = new Node();
// put in the data
new_node.data = new_data;
// link the old list to the new node
new_node.next = (head_ref);
// move the head to point to the new node
(head_ref) = new_node;
return head_ref;
}
// function to print the linked list
static void printList( Node head)
{
while (head != null)
{
System.out.print( head.data + " ");
head = head.next;
}
}
// Driver code
public static void main(String args[])
{
Node head = null;
// create linked list 10.12.8.4.6
head = push(head, 6);
head = push(head, 4);
head = push(head, 8);
head = push(head, 12);
head = push(head, 10);
System.out.println( "Linked list before sorting:");
printList(head);
// sort the linked list
head = sort(head);
System.out.print( "\nLinked list after sorting:");
printList(head);
}
}
// This code is contributed by Arnab Kundu
Python
# Python implementation of recursive selection sort
# for singly linked list | Swapping node links
# Linked List node
class Node:
def __init__(self, data):
self.data = data
self.next = None
# function to swap nodes 'currX' and 'currY' in a
# linked list without swapping data
def swapNodes(head_ref, currX, currY, prevY) :
# make 'currY' as new head
head_ref = currY
# adjust links
prevY.next = currX
# Swap next pointers
temp = currY.next
currY.next = currX.next
currX.next = temp
return head_ref
# function to sort the linked list using
# recursive selection sort technique
def recurSelectionSort( head) :
# if there is only a single node
if (head.next == None) :
return head
# 'min' - pointer to store the node having
# minimum data value
min = head
# 'beforeMin' - pointer to store node previous
# to 'min' node
beforeMin = None
ptr = head
# traverse the list till the last node
while ( ptr.next != None ) :
# if true, then update 'min' and 'beforeMin'
if (ptr.next.data < min.data) :
min = ptr.next
beforeMin = ptr
ptr = ptr.next
# if 'min' and 'head' are not same,
# swap the head node with the 'min' node
if (min != head) :
head = swapNodes(head, head, min, beforeMin)
# recursively sort the remaining list
head.next = recurSelectionSort(head.next)
return head
# function to sort the given linked list
def sort( head_ref) :
# if list is empty
if ((head_ref) == None) :
return None
# sort the list using recursive selection
# sort technique
head_ref = recurSelectionSort(head_ref)
return head_ref
# function to insert a node at the
# beginning of the linked list
def push( head_ref, new_data) :
# allocate node
new_node = Node(0)
# put in the data
new_node.data = new_data
# link the old list to the new node
new_node.next = (head_ref)
# move the head to point to the new node
(head_ref) = new_node
return head_ref
# function to print the linked list
def printList( head) :
while (head != None) :
print( head.data ,end = " ")
head = head.next
# Driver code
head = None
# create linked list 10.12.8.4.6
head = push(head, 6)
head = push(head, 4)
head = push(head, 8)
head = push(head, 12)
head = push(head, 10)
print( "Linked list before sorting:")
printList(head)
# sort the linked list
head = sort(head)
print( "\nLinked list after sorting:")
printList(head)
# This code is contributed by Arnab Kundu
C#
// C# implementation of recursive selection sort
// for singly linked list | Swapping node links
using System;
public class GFG
{
// A Linked list node
public class Node
{
public int data;
public Node next;
};
// function to swap nodes 'currX' and 'currY' in a
// linked list without swapping data
static Node swapNodes(Node head_ref, Node currX,
Node currY, Node prevY)
{
// make 'currY' as new head
head_ref = currY;
// adjust links
prevY.next = currX;
// Swap next pointers
Node temp = currY.next;
currY.next = currX.next;
currX.next = temp;
return head_ref;
}
// function to sort the linked list using
// recursive selection sort technique
static Node recurSelectionSort(Node head)
{
// if there is only a single node
if (head.next == null)
return head;
// 'min' - pointer to store the node having
// minimum data value
Node min = head;
// 'beforeMin' - pointer to store node
// previous to 'min' node
Node beforeMin = null;
Node ptr;
// traverse the list till the last node
for (ptr = head; ptr.next != null;
ptr = ptr.next)
{
// if true, then update 'min' and 'beforeMin'
if (ptr.next.data < min.data)
{
min = ptr.next;
beforeMin = ptr;
}
}
// if 'min' and 'head' are not same,
// swap the head node with the 'min' node
if (min != head)
head = swapNodes(head, head, min, beforeMin);
// recursively sort the remaining list
head.next = recurSelectionSort(head.next);
return head;
}
// function to sort the given linked list
static Node sort( Node head_ref)
{
// if list is empty
if ((head_ref) == null)
return null;
// sort the list using recursive selection
// sort technique
head_ref = recurSelectionSort(head_ref);
return head_ref;
}
// function to insert a node at the
// beginning of the linked list
static Node push(Node head_ref, int new_data)
{
// allocate node
Node new_node = new Node();
// put in the data
new_node.data = new_data;
// link the old list to the new node
new_node.next = (head_ref);
// move the head to point to the new node
(head_ref) = new_node;
return head_ref;
}
// function to print the linked list
static void printList( Node head)
{
while (head != null)
{
Console.Write(head.data + " ");
head = head.next;
}
}
// Driver code
public static void Main(String []args)
{
Node head = null;
// create linked list 10->12->8->4->6
head = push(head, 6);
head = push(head, 4);
head = push(head, 8);
head = push(head, 12);
head = push(head, 10);
Console.WriteLine("Linked list before sorting:");
printList(head);
// sort the linked list
head = sort(head);
Console.Write("\nLinked list after sorting:");
printList(head);
}
}
// This code is contributed by Princi Singh
JavaScript
<script>
// javascript implementation of recursive selection sort
// for singly linked list | Swapping node links // A Linked list node
class Node {
constructor(val) {
this.data = val;
this.next = null;
}
}
// function to swap nodes 'currX' and 'currY' in a
// linked list without swapping data
function swapNodes(head_ref, currX, currY, prevY) {
// make 'currY' as new head
head_ref = currY;
// adjust links
prevY.next = currX;
// Swap next pointers
var temp = currY.next;
currY.next = currX.next;
currX.next = temp;
return head_ref;
}
// function to sort the linked list using
// recursive selection sort technique
function recurSelectionSort(head) {
// if there is only a single node
if (head.next == null)
return head;
// 'min' - pointer to store the node having
// minimum data value
var min = head;
// 'beforeMin' - pointer to store node previous
// to 'min' node
var beforeMin = null;
var ptr;
// traverse the list till the last node
for (ptr = head; ptr.next != null; ptr = ptr.next) {
// if true, then update 'min' and 'beforeMin'
if (ptr.next.data < min.data) {
min = ptr.next;
beforeMin = ptr;
}
}
// if 'min' and 'head' are not same,
// swap the head node with the 'min' node
if (min != head)
head = swapNodes(head, head, min, beforeMin);
// recursively sort the remaining list
head.next = recurSelectionSort(head.next);
return head;
}
// function to sort the given linked list
function sort(head_ref) {
// if list is empty
if ((head_ref) == null)
return null;
// sort the list using recursive selection
// sort technique
head_ref = recurSelectionSort(head_ref);
return head_ref;
}
// function to insert a node at the
// beginning of the linked list
function push(head_ref , new_data) {
// allocate node
var new_node = new Node();
// put in the data
new_node.data = new_data;
// link the old list to the new node
new_node.next = (head_ref);
// move the head to point to the new node
(head_ref) = new_node;
return head_ref;
}
// function to print the linked list
function printList(head) {
while (head != null) {
document.write(head.data + " ");
head = head.next;
}
}
// Driver code
var head = null;
// create linked list 10.12.8.4.6
head = push(head, 6);
head = push(head, 4);
head = push(head, 8);
head = push(head, 12);
head = push(head, 10);
document.write("Linked list before sorting:<br/>");
printList(head);
// sort the linked list
head = sort(head);
document.write("<br/>Linked list after sorting:<br/>");
printList(head);
// This code is contributed by todaysgaurav
</script>
OutputLinked list before sorting:n10 12 8 4 6
Linked list after sorting:n4 6 8 10 12
Time Complexity: O(n2)
Auxiliary Space: O(n)
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Dijkstra's Algorithm to find Shortest Paths from a Source to all Given a weighted undirected graph represented as an edge list and a source vertex src, find the shortest path distances from the source vertex to all other vertices in the graph. The graph contains V vertices, numbered from 0 to V - 1.Note: The given graph does not contain any negative edge. Example
12 min read
Selection Sort Selection Sort is a comparison-based sorting algorithm. It sorts an array by repeatedly selecting the smallest (or largest) element from the unsorted portion and swapping it with the first unsorted element. This process continues until the entire array is sorted.First we find the smallest element an
8 min read