Recursive program to find all Indices of a Number
Last Updated :
30 Nov, 2021
Given an array arr of size N and an integer X. The task is to find all the indices of the integer X in the array
Examples:
Input: arr = {1, 2, 3, 2, 2, 5}, X = 2
Output: 1 3 4
Element 2 is present at indices 1, 3, 4 (0 based indexing)
Input: arr[] = {7, 7, 7}, X = 7
Output: 0 1 2
The iterative approach is simple, just traverse the given array and keep on storing the indices of the element in the another array.
Recursive approach:
- If the start index reaches the length of the array, then return empty array
- Else keep the first element of the array with yourself and pass the rest of the array to recursion.
- If the element at start index is not equal to x then just simply return the answer which came from recursion.
- Else if the element at start index is equal to x then shift the elements of the array (which is the answer of recursion) one step to the right and then put the start index in the front of the array (which came through recursion)
Below is the implementation of the above approach:
C++
// CPP program to find all indices of a number
#include <bits/stdc++.h>
using namespace std;
// A recursive function to find all
// indices of a number
int AllIndexesRecursive(int input[], int size,
int x, int output[])
{
// If an empty array comes
// to the function, then
// return zero
if (size == 0) {
return 0;
}
// Getting the recursive answer
int smallAns = AllIndexesRecursive(input + 1,
size - 1, x, output);
// If the element at index 0 is equal
// to x then add 1 to the array values
// and shift them right by 1 step
if (input[0] == x) {
for (int i = smallAns - 1; i >= 0; i--) {
output[i + 1] = output[i] + 1;
}
// Put the start index in front
// of the array
output[0] = 0;
smallAns++;
}
else {
// If the element at index 0 is not equal
// to x then add 1 to the array values
for (int i = smallAns - 1; i >= 0; i--) {
output[i] = output[i] + 1;
}
}
return smallAns;
}
// Function to find all indices of a number
void AllIndexes(int input[], int n, int x)
{
int output[n];
int size = AllIndexesRecursive(input, n,
x, output);
for (int i = 0; i < size; i++) {
cout << output[i] << " ";
}
}
// Driver Code
int main()
{
int arr[] = { 1, 2, 3, 2, 2, 5 }, x = 2;
int n = sizeof(arr) / sizeof(arr[0]);
// Function call
AllIndexes(arr, n, x);
return 0;
}
Java
// Java program to find all
// indices of a number
public class GFG {
public int[] AllIndexesRecursive(int input[],
int x, int start)
{
// If the start index reaches the
// length of the array, then
// return empty array
if (start == input.length) {
int[] ans = new int[0]; // empty array
return ans;
}
// Getting the recursive answer in
// smallIndex array
int[] smallIndex = AllIndexesRecursive(input, x,
start + 1);
// If the element at start index is equal
// to x then
// (which is the answer of recursion) and then
// (which came through recursion)
if (input[start] == x) {
int[] myAns = new int[smallIndex.length + 1];
// Put the start index in front
// of the array
myAns[0] = start;
for (int i = 0; i < smallIndex.length; i++) {
// Shift the elements of the array
// one step to the right
// and putting them in
// myAns array
myAns[i + 1] = smallIndex[i];
}
return myAns;
}
else {
// If the element at start index is not
// equal to x then just simply return the
// answer which came from recursion.
return smallIndex;
}
}
public int[] AllIndexes(int input[], int x)
{
return AllIndexesRecursive(input, x, 0);
}
// Driver Code
public static void main(String args[])
{
GFG g = new GFG();
int arr[] = { 1, 2, 3, 2, 2, 5 }, x = 2;
int output[] = g.AllIndexes(arr, x);
// Printing the output array
for (int i = 0; i < output.length; i++) {
System.out.print(output[i] + " ");
}
}
}
Python3
# Python3 program to find all
# indices of a number
def AllIndexesRecursive(input, x, start):
# If the start index reaches the
# length of the array, then
# return empty array
if (start == len(input)):
ans = [] # empty array
return ans
# Getting the recursive answer in
# smallIndex array
smallIndex = AllIndexesRecursive(input, x,
start + 1)
# If the element at start index is equal
# to x then
# (which is the answer of recursion) and then
# (which came through recursion)
if (input[start] == x):
myAns = [0 for i in range(len(smallIndex) + 1)]
# Put the start index in front
# of the array
myAns[0] = start
for i in range(len(smallIndex)):
# Shift the elements of the array
# one step to the right
# and putting them in
# myAns array
myAns[i + 1] = smallIndex[i]
return myAns
else:
# If the element at start index is not
# equal to x then just simply return the
# answer which came from recursion.
return smallIndex
# Function to find all indices of a number
def AllIndexes(input, x):
return AllIndexesRecursive(input, x, 0)
# Driver Code
arr = [ 1, 2, 3, 2, 2, 5 ]
x = 2
output=AllIndexes(arr, x)
# Printing the output array
for i in output:
print(i, end = " ")
# This code is contributed by Mohit Kumar
C#
// C# program to find all
// indices of a number
using System;
class GFG
{
public int[] AllIndexesRecursive(int []input,
int x, int start)
{
// If the start index reaches the
// length of the array, then
// return empty array
if (start == input.Length)
{
int[] ans = new int[0]; // empty array
return ans;
}
// Getting the recursive answer in
// smallIndex array
int[] smallIndex = AllIndexesRecursive(input, x,
start + 1);
// If the element at start index is equal
// to x then
// (which is the answer of recursion) and
// then (which came through recursion)
if (input[start] == x)
{
int[] myAns = new int[smallIndex.Length + 1];
// Put the start index in front
// of the array
myAns[0] = start;
for (int i = 0; i < smallIndex.Length; i++)
{
// Shift the elements of the array
// one step to the right
// and putting them in
// myAns array
myAns[i + 1] = smallIndex[i];
}
return myAns;
}
else
{
// If the element at start index is not
// equal to x then just simply return the
// answer which came from recursion.
return smallIndex;
}
}
public int[] AllIndexes(int []input, int x)
{
return AllIndexesRecursive(input, x, 0);
}
// Driver Code
public static void Main()
{
GFG g = new GFG();
int []arr = { 1, 2, 3, 2, 2, 5 };
int x = 2;
int []output = g.AllIndexes(arr, x);
// Printing the output array
for (int i = 0; i < output.Length; i++)
{
Console.Write(output[i] + " ");
}
}
}
// This code is contributed by anuj_67..
JavaScript
<script>
// Javascript program to find all indices of a number
function AllIndexesRecursive(input, x, start)
{
// If the start index reaches the
// length of the array, then
// return empty array
if (start == input.length)
{
let ans = new Array(0); // empty array
return ans;
}
// Getting the recursive answer in
// smallIndex array
let smallIndex = AllIndexesRecursive(input, x, start + 1);
// If the element at start index is equal
// to x then
// (which is the answer of recursion) and
// then (which came through recursion)
if (input[start] == x)
{
let myAns = new Array(smallIndex.length + 1);
// Put the start index in front
// of the array
myAns[0] = start;
for (let i = 0; i < smallIndex.length; i++)
{
// Shift the elements of the array
// one step to the right
// and putting them in
// myAns array
myAns[i + 1] = smallIndex[i];
}
return myAns;
}
else
{
// If the element at start index is not
// equal to x then just simply return the
// answer which came from recursion.
return smallIndex;
}
}
function AllIndexes(input, x)
{
return AllIndexesRecursive(input, x, 0);
}
let arr = [ 1, 2, 3, 2, 2, 5 ];
let x = 2;
let output = AllIndexes(arr, x);
// Printing the output array
for(let i = 0; i < output.length; i++)
{
document.write(output[i] + " ");
}
// This code is contributed by mukesh07.
</script>
Simpler Recursive approach: (Traversing from the End)
- If the last index reaches the length of the array, then return empty array
- Else reduce the last index and pass the whole array to recursion.
- If the element at the last index is not equal to x then just simply return the answer which came from recursion.
- Else if the element at the last index is equal to x then simply insert the last element at the last index into index pointed by ans.
This avoids the complication of shifting all the elements by one index and also incrementing all the elements in the output array.
Below is the implementation of the above approach:
C++
// CPP program to find all indices of a number
#include <bits/stdc++.h>
using namespace std;
// A recursive function to find all
// indices of a number
int AllIndexesRecursive(int input[], int size,
int x, int output[])
{
// If the input array becomes empty
if(size == 0)
return 0;
// Getting the recursive answer
int smallAns = AllIndexesRecursive(input, size - 1, x, output);
// If the last element of input array is equal to x
if(input[size - 1] == x)
{
// Insert the index of last element of the input array into the output array
// And increment ans
output[smallAns++] = size - 1;
}
return smallAns;
}
// Function to find all indices of a number
void AllIndexes(int input[], int n, int x)
{
int output[n];
int size = AllIndexesRecursive(input, n,
x, output);
for (int i = 0; i < size; i++) {
cout << output[i] << " ";
}
}
// Driver Code
int main()
{
int arr[] = { 1, 2, 3, 2, 2, 5 }, x = 2;
int n = sizeof(arr) / sizeof(arr[0]);
// Function call
AllIndexes(arr, n, x);
return 0;
}
Java
// Java program to find all indices of a number
public class Main
{
// A recursive function to find all
// indices of a number
static int AllIndexesRecursive(int[] input, int size, int x, int[] output)
{
// If the input array becomes empty
if(size == 0)
return 0;
// Getting the recursive answer
int smallAns = AllIndexesRecursive(input, size - 1, x, output);
// If the last element of input array is equal to x
if(input[size - 1] == x)
{
// Insert the index of last element of the input array into the output array
// And increment ans
output[smallAns++] = size - 1;
}
return smallAns;
}
// Function to find all indices of a number
static void AllIndexes(int[] input, int n, int x)
{
int[] output = new int[n];
int size = AllIndexesRecursive(input, n, x, output);
for (int i = 0; i < size; i++) {
System.out.print(output[i] + " ");
}
}
public static void main(String[] args) {
int[] arr = { 1, 2, 3, 2, 2, 5 };
int x = 2;
int n = arr.length;
// Function call
AllIndexes(arr, n, x);
}
}
// This code is contributed by suresh07.
Python3
# Python3 program to find all indices of a number
# A recursive function to find all
# indices of a number
def AllIndexesRecursive(Input, size, x, output):
# If the input array becomes empty
if size == 0:
return 0
# Getting the recursive answer
smallAns = AllIndexesRecursive(Input, size - 1, x, output)
# If the last element of input array is equal to x
if Input[size - 1] == x:
# Insert the index of last element of the input array into the output array
# And increment ans
output[smallAns] = size - 1
smallAns+=1
return smallAns
# Function to find all indices of a number
def AllIndexes(Input, n, x):
output = [0]*n
size = AllIndexesRecursive(Input, n, x, output)
for i in range(size):
print(output[i], "", end = "")
arr = [ 1, 2, 3, 2, 2, 5 ]
x = 2
n = len(arr)
# Function call
AllIndexes(arr, n, x)
# This code is contributed by rameshtravel07
C#
// C# program to find all indices of a number
using System;
using System.Collections.Generic;
class GFG {
// A recursive function to find all
// indices of a number
static int AllIndexesRecursive(int[] input, int size, int x, int[] output)
{
// If the input array becomes empty
if(size == 0)
return 0;
// Getting the recursive answer
int smallAns = AllIndexesRecursive(input, size - 1, x, output);
// If the last element of input array is equal to x
if(input[size - 1] == x)
{
// Insert the index of last element of the input array into the output array
// And increment ans
output[smallAns++] = size - 1;
}
return smallAns;
}
// Function to find all indices of a number
static void AllIndexes(int[] input, int n, int x)
{
int[] output = new int[n];
int size = AllIndexesRecursive(input, n, x, output);
for (int i = 0; i < size; i++) {
Console.Write(output[i] + " ");
}
}
static void Main() {
int[] arr = { 1, 2, 3, 2, 2, 5 };
int x = 2;
int n = arr.Length;
// Function call
AllIndexes(arr, n, x);
}
}
// This code is contributed by decode22007.
JavaScript
<script>
// Javascript program to find all indices of a number
// A recursive function to find all
// indices of a number
function AllIndexesRecursive(input, size, x, output)
{
// If the input array becomes empty
if(size == 0)
return 0;
// Getting the recursive answer
let smallAns = AllIndexesRecursive(input, size - 1, x, output);
// If the last element of input array is equal to x
if(input[size - 1] == x)
{
// Insert the index of last element of the input array into the output array
// And increment ans
output[smallAns++] = size - 1;
}
return smallAns;
}
// Function to find all indices of a number
function AllIndexes(input, n, x)
{
let output = new Array(n);
let size = AllIndexesRecursive(input, n, x, output);
for (let i = 0; i < size; i++) {
document.write(output[i] + " ");
}
}
let arr = [ 1, 2, 3, 2, 2, 5 ];
let x = 2;
let n = arr.length;
// Function call
AllIndexes(arr, n, x);
// This code is contributed by divyeshrabadiya07.
</script>
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem