Reconstructing the Array with Maximum Possible Sum by Given Operations
Last Updated :
29 Jan, 2024
Consider an array A[] of length N. Suppose, you can create obtain B[] from A[] using below steps:
- Iterate N/2 times on A and follow below the step below:
- Insert (Ai + Ai+(N/2)) and |Ai - Ai+(N/2)| into B[]
- After that rearrange B[] in any random order.
You are given B[], the task is to reconstructing any A[] if exists such that B[] can be obtained using above operations. If it is, then sum of A[] must be maximum possible else output -1.
Examples:
Input: N = 6, B[] = {4, 2, 8, 2, 10, 4}
Output: A[] = {7, 5, 3, 3, 3, 1}
Explanation: Considered that A[] is {7, 5, 3, 3, 3, 1} and B[] empty. Then (N=6)/2 = 3 iterations will be as follows:
- First Iteration (i = 1): (A1 + A1+(6/2)) and |A1 - A1+(6/2)| and (A1 + A1+(6/2)) and |A1 - A1+(6/2)| are 7+3 = 10 and |7-3| = 4 respectively. Updated B[] = {10, 4}
- Second Iteration (i = 2): (A2 + A2+(6/2)) and |A2 - A2+(6/2)| and (A2 + A2+(6/2)) and |A2 - A2+(6/2)| are 5+3 = 8 and ∣5−3∣= 2 respectively. Updated B[] = {10, 4, 8, 2}
- Third Iteration (i = 3): (A3 + A3+(6/2)) and |A3 - A3+(6/2)| and (A3 + A3+(6/2)) and |A3 - A3+(6/2)| are 3+1 = 4 and ∣3−1∣ = 2 respectively. Updated B[] = {10, 4, 8, 2, 4, 2}
It can be verified that obtained updated B[] = {10, 4, 8, 2, 4, 2} is an arrangement of input B[] = {4, 2, 8, 2, 10, 4}. Thus, B[] can be achieved by A[] using given operation. It can also verified that the sum of A[] among all possible such arrays is maximum possible, which is 22 (7+5+3+3+3+1).
Input: N = 2, B[] = {2, 3}
Output: -1
Explanation: It can be verified that no such A[] exists, by which we can obtain B[] using given operation.
Approach:
Firstly, we will check if the sum of B[] is even or not, the reason for checking is this we can confirm that whether such an array A[] really exist or not.
After this break the B[] in to arrays one with all even number and one with odd number. Next the two elements of A[] can be computed by basic math and we need max sum of A[]. Therefore, what we would do is this:
Greatest(EVEN) + Smallest(EVEN) and Greatest(EVEN) - Greatest(EVEN)
Same we will do with the subarray containing odd elements.
Step-by-step approach:
- Initialize two
arrays
EV[]
for even numbers and OD[]
for odd numbers. - Iterate over the
B[]
and add even numbers to EV[]
and odd numbers to OD[]
. - Check if the size of both
EV[]
and OD[]
is even. If not, output -1
. - Sort both
EV[]
and OD[]
. - Initialize an array let say
A[]
of size N
to store the result. - Use two pointers
p
and q
to iterate over EV[]
and OD[]
from the smallest to the largest and from the largest to the smallest, respectively. - Calculate the sum
X
and the difference Y
for each pair of elements from EV[]
and OD[]
. - Store the average of the sum in the first half of array
A[]
and the average of the difference in the second half of array A[]
. - Continue this process until all elements are processed.
- Print the elements of array
A[]
.
Below is the implementation of the above approach:
C++
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
// Function to output A[], if it exists
void FindA(int N, vector<int>& B) {
vector<int> A(N);
vector<int> EV; // Vector to store even numbers
vector<int> OD; // Vector to store odd numbers
for (int i = 0; i < N; i++) {
if (B[i] % 2 == 0) {
EV.push_back(B[i]); // Add even numbers to EV
} else {
OD.push_back(B[i]); // Add odd numbers to OD
}
}
// Check if the number of even and odd numbers are even
if (EV.size() % 2 != 0 || OD.size() % 2 != 0) {
cout << "-1" << endl;
} else {
sort(EV.begin(), EV.end()); // Sort the array of even numbers
sort(OD.begin(), OD.end()); // Sort the array of odd numbers
int n = EV.size();
int p = 0;
int q = n - 1;
int j = 0;
while (p < q) {
int a = EV[q]; // Get the greatest even number
int b = EV[p]; // Get the smallest even number
int X = a + b; // Sum of the greatest and smallest even numbers
int Y = a - b; // Difference of the greatest and smallest even numbers
A[j] = X / 2; // Store the average of the sum in the first half of array A
A[j + (N / 2)] = Y / 2; // Store the average of the difference in the
// second half of array
j++;
q--;
p++;
}
n = OD.size();
p = 0;
q = n - 1;
while (p < q) {
int a = OD[q]; // Get the greatest odd number
int b = OD[p]; // Get the smallest odd number
int X = a + b; // Sum of the greatest and smallest odd numbers
int Y = a - b; // Difference of the greatest and smallest odd numbers
A[j] = X / 2; // Store the average of the sum in the first half of array A
A[j + (N / 2)] = Y / 2; // Store the average of the difference
// in the second half of array
j++;
q--;
p++;
}
for (int i : A) {
cout << i << " ";
}
cout << endl;
}
}
// Driver Code
int main() {
// Input
int N = 6;
vector<int> B = {4, 2, 8, 2, 10, 4};
// Function call
FindA(N, B);
return 0;
}
Java
// Java code to implement the approach
import java.io.*;
import java.lang.*;
import java.util.*;
// Driver Class
class Main {
public static void main(String[] args)
throws java.lang.Exception
{
// Input
int N = 6;
int[] B = { 4, 2, 8, 2, 10, 4 };
// Function_call
FindA(N, B);
}
// method to output A[], If it exists
public static void FindA(int N, int[] B)
{
int[] A = new int[N];
ArrayList<Integer> EV
= new ArrayList<Integer>(); // Array to store
// even numbers
ArrayList<Integer> OD
= new ArrayList<Integer>(); // Array to store
// odd numbers
for (int i = 0; i < N; i++) {
if (B[i] % 2 == 0) {
EV.add(B[i]); // Add even numbers to EV
}
else {
OD.add(B[i]); // Add odd numbers to OD
}
}
// Check if the number of even and odd numbers are
// even
if ((EV.size()) % 2 != 0 || (OD.size()) % 2 != 0) {
System.out.println("-1");
}
else {
Collections.sort(
EV); // Sort the array of even numbers
Collections.sort(
OD); // Sort the array of odd numbers
int n = EV.size();
int p = 0;
int q = n - 1;
int j = 0;
while (p < q) {
int a = EV.get(
q); // Get the greatest even number
int b = EV.get(
p); // Get the smallest even number
int X = (a + b); // Sum of the greatest and
// smallest even numbers
int Y
= (a - b); // Difference of the greatest
// and smallest even numbers
A[j]
= X / 2; // Store the average of the sum
// in the first half of array A
A[j + (N / 2)]
= Y / 2; // Store the average of the
// difference in the second
// half of array A
j++;
q--;
p++;
}
n = OD.size();
p = 0;
q = n - 1;
while (p < q) {
int a = OD.get(
q); // Get the greatest odd number
int b = OD.get(
p); // Get the smallest odd number
int X = (a + b); // Sum of the greatest and
// smallest odd numbers
int Y
= (a - b); // Difference of the greatest
// and smallest odd numbers
A[j]
= X / 2; // Store the average of the sum
// in the first half of array A
A[j + (N / 2)]
= Y / 2; // Store the average of the
// difference in the second
// half of array A
j++;
q--;
p++;
}
for (int i : A) {
System.out.print(i + " ");
}
System.out.println();
}
}
}
Python3
def GFG(N, B):
A = [0] * N
EV = []
OD = []
# Separate even and odd numbers
for i in range(N):
if B[i] % 2 == 0:
EV.append(B[i])
else:
OD.append(B[i])
# Check if the number of even and odd numbers is even
if len(EV) % 2 != 0 or len(OD) % 2 != 0:
print("-1")
else:
EV.sort() # Sort the array of even numbers
OD.sort() # Sort the array of odd numbers
n = len(EV)
p = 0
q = n - 1
j = 0
# Process even numbers
while p < q:
a = EV[q]
b = EV[p]
X = a + b
Y = a - b
A[j] = X // 2 # Store the average of the sum in the first half of array A
A[j + N // 2] = Y // 2 # Store the average of the difference in the second half of array A
j += 1
q -= 1
p += 1
n = len(OD)
p = 0
q = n - 1
# Process odd numbers
while p < q:
a = OD[q]
b = OD[p]
X = a + b
Y = a - b
A[j] = X // 2
A[j + N // 2] = Y // 2
j += 1
q -= 1
p += 1
# Print the result
print(" ".join(map(str, A)))
# Driver Code
def main():
# Input
N = 6
B = [4, 2, 8, 2, 10, 4]
# Function call
GFG(N, B)
if __name__ == "__main__":
main()
C#
using System;
using System.Collections.Generic;
using System.Linq;
class Program
{
// Function to output A[], if it exists
static void FindA(int N, List<int> B)
{
List<int> A = new List<int>(new int[N]);
List<int> EV = new List<int>(); // List to store even numbers
List<int> OD = new List<int>(); // List to store odd numbers
// Separate even and odd numbers
foreach (int num in B)
{
if (num % 2 == 0)
{
EV.Add(num); // Add even numbers to EV
}
else
{
OD.Add(num); // Add odd numbers to OD
}
}
// Check if the number of even and odd numbers are even
if (EV.Count % 2 != 0 || OD.Count % 2 != 0)
{
Console.WriteLine("-1");
}
else
{
EV.Sort(); // Sort the list of even numbers
OD.Sort(); // Sort the list of odd numbers
int n = EV.Count;
int p = 0;
int q = n - 1;
int j = 0;
// Merge even numbers
while (p < q)
{
int a = EV[q]; // Get the greatest even number
int b = EV[p]; // Get the smallest even number
int X = a + b; // Sum of the greatest and smallest even numbers
int Y = a - b; // Difference of the greatest and smallest even numbers
A[j] = X / 2; // Store the average of the sum in the first half of array A
A[j + (N / 2)] = Y / 2; // Store the average of the difference in the second half of array
j++;
q--;
p++;
}
n = OD.Count;
p = 0;
q = n - 1;
// Merge odd numbers
while (p < q)
{
int a = OD[q]; // Get the greatest odd number
int b = OD[p]; // Get the smallest odd number
int X = a + b; // Sum of the greatest and smallest odd numbers
int Y = a - b; // Difference of the greatest and smallest odd numbers
A[j] = X / 2; // Store the average of the sum in the first half of array A
A[j + (N / 2)] = Y / 2; // Store the average of the difference in the second half of array
j++;
q--;
p++;
}
// Output the resulting array A
foreach (int i in A)
{
Console.Write(i + " ");
}
Console.WriteLine();
}
}
// Driver Code
static void Main()
{
// Input
int N = 6;
List<int> B = new List<int> { 4, 2, 8, 2, 10, 4 };
// Function call
FindA(N, B);
}
}
JavaScript
function GFG(N, B) {
let A = new Array(N);
let EV = [];
let OD = [];
// Separate even and odd numbers
for (let i = 0; i < N; i++) {
if (B[i] % 2 === 0) {
EV.push(B[i]);
} else {
OD.push(B[i]);
}
}
// Check if the number of the even and odd numbers are even
if (EV.length % 2 !== 0 || OD.length % 2 !== 0) {
console.log("-1");
} else {
EV.sort((a, b) => a - b); // Sort the array of the even numbers
OD.sort((a, b) => a - b); // Sort the array of odd numbers
let n = EV.length;
let p = 0;
let q = n - 1;
let j = 0;
// Process even numbers
while (p < q) {
let a = EV[q];
let b = EV[p];
let X = a + b;
let Y = a - b;
A[j] = X / 2; // Store the average of the sum in the first half of array A
A[j + N / 2] = Y / 2; // Store the average of the difference in the second half of array A
j++;
q--;
p++;
}
n = OD.length;
p = 0;
q = n - 1;
// Process odd numbers
while (p < q) {
let a = OD[q];
let b = OD[p];
let X = a + b;
let Y = a - b;
A[j] = X / 2;
A[j + N / 2] = Y / 2;
j++;
q--;
p++;
}
// Print the result
console.log(A.join(" "));
}
}
// Driver Code
function main() {
// Input
let N = 6;
let B = [4, 2, 8, 2, 10, 4];
// Function call
GFG(N, B);
}
main();
Time Complexity: O(NLogN), As sorting is performed.
Auxiliary Space: O(N), As ArrayLists EV and OD of length N are used.
Similar Reads
Find the Maximum sum of the Array by performing the given operations Given an Array A[] of size N with repeated elements and all array elements are positive, the task is to find the maximum sum by applying the given operations: Select any 2 indexes and select 2 integers(say x and y) such that the product of the elements(x and y) is equal to the product of the element
5 min read
Maximum possible array sum after performing the given operation Given an array arr[] of size N, the task is to find the maximum sum of the elements of the array after applying the given operation any number of times. In a single operation, choose an index 1 ? i < N and multiply both arr[i] and arr[i - 1] by -1.Examples: Input: arr[] = {-10, 5, -4} Output: 19
9 min read
Maximum possible Array sum after performing given operations Given array arr[] of positive integers, an integer Q, and arrays X[] and Y[] of size Q. For each element in arrays X[] and Y[], we can perform the below operations: For each query from array X[] and Y[], select at most X[i] elements from array arr[] and replace all the selected elements with integer
9 min read
Maximum Possible Product in Array after performing given Operations Given an array with size N. You are allowed to perform two types of operations on the given array as described below: Choose some position i and j, such that (i is not equals to j), replace the value of a[j] with a[i]*a[j] and remove the number from the ith cell.Choose some position i and remove the
13 min read
Maximum score possible after performing given operations on an Array Given an array A of size N, the task is to find the maximum score possible of this array. The score of an array is calculated by performing the following operations on the array N times: If the operation is odd-numbered, the score is incremented by the sum of all elements of the current array. If th
15+ min read
Minimum possible sum of array elements after performing the given operation Given an array arr[] of size N and a number X. If any sub array of the array(possibly empty) arr[i], arr[i+1], ... can be replaced with arr[i]/x, arr[i+1]/x, .... The task is to find the minimum possible sum of the array which can be obtained. Note: The given operation can only be performed once.Exa
9 min read
Length of the smallest subarray with maximum possible sum Given an array arr[] consisting of N non-negative integers, the task is to find the minimum length of the subarray whose sum is maximum. Example: Input: arr[] = {0, 2, 0, 0, 12, 0, 0, 0}Output: 4Explanation: The sum of the subarray {2, 0, 0, 12} = 2 + 0 + 0 + 12 = 14, which is maximum sum possible a
6 min read
Maximum Sum of Array with given MEX Given 3 integers N, K, and X, the task is to construct an array arr[] with the below conditions: Size of the array = NMEX of the array = KAll array elements should be at most XAmong all the array that follows the above condition print the one having the maximum sum of its elements or print -1 if no
7 min read
Maximize sum of pairwise products generated from the given Arrays Given three arrays arr1[], arr2[] and arr3[] of length N1, N2, and N3 respectively, the task is to find the maximum sum possible by adding the products of pairs taken from different arrays. Note: Each array element can be a part of a single pair. Examples: Input: arr1[] = {3, 5}, arr2[] = {2, 1}, ar
11 min read