Rearrange array to make decimal equivalents of reversed binary representations of array elements sorted
Last Updated :
23 Jul, 2025
Given an array arr[] consisting of N positive integers, the task is to rearrange the array such that the reversed binary representation of all the array elements is sorted.
If the decimal equivalent of reversed binary representations of two or more array elements is equal, then the original value is taken into consideration while rearranging the array.
Examples:
Input: arr[] = {43, 52, 61, 41}
Output: 52 41 61 43
Explanation:
Below are the reversed binary representation of the array elements:
- 43 --> (101011)2 --> reversed --> 53.
- 52 --> (110100)2 --> reversed --> 11.
- 61 --> (111101)2 --> reversed --> 47.
- 41 --> (101001)2 --> reversed --> 37.
Therefore, after rearranging the array element as {52, 41, 61, 43}, the reversed binary representation of rearranged array elements is in sorted order.
Input: arr[] = {5, 3, 6, 2, 4}
Output: 2 4 3 6 5
Approach: Follow the steps below to solve the problem:
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to reverse the bits of a number
int keyFunc(int n)
{
// Stores the reversed number
int rev = 0;
while (n > 0)
{
// Divide rev by 2
rev = rev << 1;
// If the value of N is odd
if (n & 1 == 1)
rev = rev ^ 1;
// Update the value of N
n = n >> 1;
}
// Return the final value of rev
return rev;
}
// Function for rearranging the array
// element according to the given rules
vector<vector<int>> getNew(vector<int> arr)
{
// Stores the new array elements
vector<vector<int>> ans;
for (int i:arr)
ans.push_back({keyFunc(i), i});
return ans;
}
// Function for rearranging the array
vector<int> getArr(vector<vector<int> > arr){
// Stores the new array
vector<int> ans;
for (auto i:arr)
ans.push_back(i[1]);
return ans;
}
// Function to sort the array by reversing
// binary representation
void sortArray(vector<int> arr)
{
// Creating a new array
vector<vector<int> > newArr = getNew(arr);
// Sort the array with the key
sort(newArr.begin(),newArr.end());
// Get arr from newArr
arr = getArr(newArr);
// Print the sorted array
int n = arr.size();
cout<<"[";
for(int i = 0; i < n - 1; i++)
cout << arr[i] << ", ";
cout << arr[n - 1] << "]";
}
// Driver Code
int main()
{
vector<int> arr = {43, 52, 61, 41};
sortArray(arr);
return 0;
}
// This code is contributed by mohit kumar 29.
Java
// Java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
class GFG{
// Function to reverse the bits of a number
static int keyFunc(int n)
{
// Stores the reversed number
int rev = 0;
while (n > 0)
{
// Divide rev by 2
rev = rev << 1;
// If the value of N is odd
if ((n & 1) == 1)
rev = rev ^ 1;
// Update the value of N
n = n >> 1;
}
// Return the final value of rev
return rev;
}
// Function for rearranging the array
// element according to the given rules
static int[][] getNew(int arr[])
{
// Stores the new array elements
int ans[][] = new int[arr.length][2];
for(int i = 0; i < arr.length; i++)
ans[i] = new int[]{ keyFunc(arr[i]), arr[i] };
return ans;
}
// Function for rearranging the array
static int[] getArr(int[][] arr)
{
// Stores the new array
int ans[] = new int[arr.length];
int idx = 0;
for(int i[] : arr)
ans[idx++] = i[1];
return ans;
}
// Function to sort the array by reversing
// binary representation
static void sortArray(int arr[])
{
// Creating a new array
int[][] newArr = getNew(arr);
// Sort the array with the key
Arrays.sort(newArr, (a, b) -> {
if (Integer.compare(a[0], b[0]) == 0)
return Integer.compare(a[1], b[1]);
return Integer.compare(a[0], b[0]);
});
// Get arr from newArr
arr = getArr(newArr);
// Print the sorted array
int n = arr.length;
System.out.print("[");
for(int i = 0; i < n - 1; i++)
System.out.print(arr[i] + ", ");
System.out.print(arr[n - 1] + "]");
}
// Driver Code
public static void main(String[] args)
{
int arr[] = { 43, 52, 61, 41 };
sortArray(arr);
}
}
// This code is contributed by Kingash
Python3
# Python3 program for the above approach
# Function to reverse the bits of a number
def keyFunc(n):
# Stores the reversed number
rev = 0
while (n > 0):
# Divide rev by 2
rev = rev << 1
# If the value of N is odd
if (n & 1 == 1):
rev = rev ^ 1
# Update the value of N
n = n >> 1
# Return the final value of rev
return rev
# Function for rearranging the array
# element according to the given rules
def getNew(arr):
# Stores the new array elements
ans = []
for i in arr:
ans.append([keyFunc(i), i])
return ans
# Function for rearranging the array
def getArr(arr):
# Stores the new array
ans = []
for i in arr:
ans.append(i[1])
return ans
# Function to sort the array by reversing
# the binary representation
def sortArray(arr):
# Creating a new array
newArr = getNew(arr)
# Sort the array with the key
newArr.sort()
# Get arr from newArr
arr = getArr(newArr)
# Print the sorted array
print(arr)
# Driver Code
arr = [43, 52, 61, 41]
sortArray(arr)
C#
// C# program for the above approach
using System;
class GFG {
// Function to reverse the bits of a number
static int keyFunc(int n)
{
// Stores the reversed number
int rev = 0;
while (n > 0) {
// Divide rev by 2
rev = rev << 1;
// If the value of N is odd
if ((n & 1) == 1)
rev = rev ^ 1;
// Update the value of N
n = n >> 1;
}
// Return the final value of rev
return rev;
}
// Function for rearranging the array
// element according to the given rules
static int[][] getNew(int[] arr)
{
// Stores the new array elements
int[][] ans = new int[arr.Length][];
for (int i = 0; i < arr.Length; i++)
ans[i] = new int[] { keyFunc(arr[i]), arr[i] };
return ans;
}
// Function for rearranging the array
static int[] getArr(int[][] arr)
{
// Stores the new array
int[] ans = new int[arr.Length];
int idx = 0;
foreach(var i in arr) ans[idx++] = i[1];
return ans;
}
// Function to sort the array by reversing
// binary representation
static void sortArray(int[] arr)
{
// Creating a new array
int[][] newArr = getNew(arr);
// Sort the array with the key
Array.Sort(
newArr, new Comparison<int[]>((a, b) => {
return (a[0] == b[0]) ? (a[1] - b[1])
: (a[0] - b[0]);
}));
// Get arr from newArr
arr = getArr(newArr);
// Print the sorted array
int n = arr.Length;
Console.Write("[");
for (int i = 0; i < n - 1; i++)
Console.Write(arr[i] + ", ");
Console.Write(arr[n - 1] + "]");
}
// Driver Code
public static void Main(string[] args)
{
int[] arr = { 43, 52, 61, 41 };
sortArray(arr);
}
}
// This code is contributed by phasing17
JavaScript
<script>
// JavaScript program for the above approach
// Function to reverse the bits of a number
function keyFunc(n) {
// Stores the reversed number
let rev = 0;
while (n > 0) {
// Divide rev by 2
rev = rev << 1;
// If the value of N is odd
if (n & 1 == 1)
rev = rev ^ 1;
// Update the value of N
n = n >> 1;
}
// Return the final value of rev
return rev;
}
// Function for rearranging the array
// element according to the given rules
function getNew(arr) {
// Stores the new array elements
let ans = [];
for (let i of arr)
ans.push([keyFunc(i), i]);
return ans;
}
// Function for rearranging the array
function getArr(arr) {
// Stores the new array
let ans = [];
for (let i of arr)
ans.push(i[1]);
return ans;
}
// Function to sort the array by reversing
// binary representation
function sortArray(arr) {
// Creating a new array
let newArr = getNew(arr);
// Sort the array with the key
newArr.sort();
// Get arr from newArr
arr = getArr(newArr);
// Print the sorted array
let n = arr.length;
document.write("[");
for (let i = 0; i < n - 1; i++)
document.write(arr[i] + ", ");
document.write(arr[n - 1] + "]");
}
// Driver Code
let arr = [43, 52, 61, 41];
sortArray(arr);
// This code is contributed by _saurabh_jaiswal
</script>
Time Complexity: O(N * log N)
Auxiliary Space: O(N)
Space-Optimized Approach: Follow the steps below to solve the problem:
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to reverse the bits of number
int keyFunc(int n)
{
// Stores the reversed number
int rev = 0;
while (n > 0) {
// Divide rev by 2
rev = rev << 1;
// If the value of N is odd
if (n & 1 == 1)
rev = rev ^ 1;
// Update the value of N
n = n >> 1;
}
// Return the final value of rev
return rev;
}
//defining the comparison function
bool compare(int a, int b)
{
return keyFunc(a) < keyFunc(b);
}
// Function to sort the array by reversing
// binary representation
void sortArray(int arr[], int n)
{
// Sort the array with the key
sort(arr, arr + n, compare);
// Print the sorted array
for (int i = 0; i < n; i++)
cout << arr[i] << " ";
}
int main()
{
// Driver Code
int arr[] = { 43, 52, 61, 41 };
int n = 4;
sortArray(arr, n);
return 0;
}
// this code is contributed by phasing17
Java
/*package whatever //do not write package name here */
import java.io.*;
import java.util.*;
class GFG {
// Function to reverse the bits of number
public static int keyFunc(String num)
{
int n = Integer.parseInt(num);
// Stores the reversed number
int rev = 0;
while (n > 0) {
// Divide rev by 2
rev = rev << 1;
// If the value of N is odd
if ((n & 1) == 1)
rev = rev ^ 1;
// Update the value of N
n = n >> 1;
}
// Return the final value of rev
return rev;
}
// Function to sort the array by reversing
// binary representation
public static void sortArray(List<Integer> arrInt,
int n)
{
// Sort the array with the key
List<String> arr = new ArrayList<String>();
for (int i = 0; i < arrInt.size(); i++) {
arr.add(Integer.toString(arrInt.get(i)));
}
Collections.sort(arr, new Comparator<String>() {
@Override
// defining the comparison function
public int compare(final String a, String b)
{
if (keyFunc(a) < keyFunc(b))
return -1;
return 1;
}
});
// Print the sorted array
for (int i = 0; i < n; i++)
System.out.print(arr.get(i) + " ");
}
// Driver Code
public static void main(String[] args)
{
List<Integer> arr = new ArrayList<Integer>();
arr.add(43);
arr.add(52);
arr.add(61);
arr.add(41);
int n = 4;
sortArray(arr, n);
}
}
// This code is contributed by akashish__
Python3
# Python3 program for the above approach
# Function to reverse the bits of number
def keyFunc(n):
# Stores the reversed number
rev = 0
while (n > 0):
# Divide rev by 2
rev = rev << 1
# If the value of N is odd
if (n & 1 == 1):
rev = rev ^ 1
# Update the value of N
n = n >> 1
# Return the final value of rev
return rev
# Function to sort the array by reversing
# binary representation
def sortArray(arr):
# Sort the array with the key
arr = sorted(arr, key = keyFunc)
# Print the sorted array
print(arr)
# Driver Code
arr = [43, 52, 61, 41]
sortArray(arr)
C#
// C# program for the above approach
using System;
using System.Collections.Generic;
public class GFG
{
// Function to reverse the bits of number
public static int keyFunc(int n)
{
// Stores the reversed number
int rev = 0;
while (n > 0) {
// Divide rev by 2
rev = rev << 1;
// If the value of N is odd
if ((n & 1) == 1)
rev = rev ^ 1;
// Update the value of N
n = n >> 1;
}
// Return the final value of rev
return rev;
}
// defining the comparison function
public static int compare(int a, int b)
{
return keyFunc(a) - keyFunc(b);
}
// Function to sort the array by reversing
// binary representation
public static void sortArray(int[] arr, int n)
{
// Sort the array with the key
Array.Sort(arr, compare);
// Print the sorted array
for (int i = 0; i < n; i++)
Console.Write(arr[i] + " ");
}
public static void Main(string[] args)
{
// Driver Code
int[] arr = { 43, 52, 61, 41 };
int n = 4;
sortArray(arr, n);
}
}
// This code is contributed by phasing17
JavaScript
// JavaScript program for the above approach
// Function to reverse the bits of number
function keyFunc(n)
{
// Stores the reversed number
var rev = 0;
while (n > 0)
{
// Divide rev by 2
rev = rev << 1;
// If the value of N is odd
if (n & 1 == 1)
rev = rev ^ 1;
// Update the value of N
n = n >> 1;
}
// Return the final value of rev
return rev;
}
// Function to sort the array by reversing
// binary representation
function sortArray(arr)
{
// Sort the array with the key
arr.sort((a, b) => keyFunc(a) > keyFunc(b));
// Print the sorted array
console.log(arr);
}
// Driver Code
var arr = [43, 52, 61, 41];
sortArray(arr);
//this code is contributed by phasing17
Time Complexity: O(N * log N)
Auxiliary Space: O(1)
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem