Queries to find minimum absolute difference between adjacent array elements in given ranges
Last Updated :
13 Jun, 2022
Given an array arr[] consisting of N integers and an array query[] consisting of queries of the form {L, R}, the task for each query is to find the minimum of the absolute difference between adjacent elements over the range [L, R].
Examples:
Input: arr[] = {2, 6, 1, 8, 3, 4}, query[] = {{0, 3}, {1, 5}, {4, 5}}
Output:
4
1
1
Explanation:
Following are the values of queries performed:
- The minimum absolute difference between adjacent element over the range [0, 3] is min(|2 - 6|, |6 - 1|, |1 - 8|) = 4.
- The minimum absolute difference between adjacent element over the range [1, 5] is min(|6 - 1|, |1 - 8|, |8 - 3|, |3 - 4| ) = 1.
- The minimum absolute difference between adjacent element over the range [4, 5] is min(|3 - 4|) = 1.
Therefore, print 4, 1, 1 as the results of the given queries.
Input: arr[] = [10, 20, 1, 1, 5 ], query[] = [0, 1], [1, 4], [2, 3]
Output:
10
0
0
Naive Approach: The simplest approach to solve the given problem is to create an array diff[] that stores the absolute difference between adjacent elements for each array element. Now for each query, traverse the array diff[] over the range [L, R - 1] and print the value of minimum all the values in the range [L, R - 1].
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Structure for query range
struct Query {
int L, R;
};
int MAX = 5000;
// Function to find the minimum difference
// between adjacent array element over the
// given range [L, R] for Q Queries
void minDifference(int arr[], int n,
Query q[], int m)
{
// Find the sum of all queries
for (int i = 0; i < m; i++) {
// Left and right boundaries
// of current range
int L = q[i].L, R = q[i].R;
int ans = MAX;
for (int i = L; i < R; i++) {
ans = min(ans, arr[i]);
}
// Print the sum of the
// current query range
cout << ans << '\n';
}
}
// Function to find the minimum absolute
// difference of adjacent array elements
// for the given range
void minimumDifference(int arr[], Query q[],
int N, int m)
{
// Stores the absolute difference of
// adjacent elements
int diff[N];
for (int i = 0; i < N - 1; i++)
diff[i] = abs(arr[i] - arr[i + 1]);
// Find the minimum difference of
// adjacent elements
minDifference(diff, N - 1, q, m);
}
// Driver Code
int main()
{
int arr[] = { 2, 6, 1, 8, 3, 4 };
int N = sizeof(arr) / sizeof(arr[0]);
Query Q[] = { { 0, 3 }, { 1, 5 }, { 4, 5 } };
int M = sizeof(Q) / sizeof(Q[0]);
minimumDifference(arr, Q, N, M);
return 0;
}
Java
// Java program for the above approach
class GFG{
// Structure for query range
static class Query {
int L, R;
public Query(int l, int r) {
super();
L = l;
R = r;
}
};
static int MAX = 5000;
// Function to find the minimum difference
// between adjacent array element over the
// given range [L, R] for Q Queries
static void minDifference(int arr[], int n,
Query q[], int m)
{
// Find the sum of all queries
for (int i = 0; i < m; i++) {
// Left and right boundaries
// of current range
int L = q[i].L, R = q[i].R;
int ans = MAX;
for (int j = L; j < R; j++) {
ans = Math.min(ans, arr[j]);
}
// Print the sum of the
// current query range
System.out.println(ans);
}
}
// Function to find the minimum absolute
// difference of adjacent array elements
// for the given range
static void minimumDifference(int arr[], Query q[],
int N, int m)
{
// Stores the absolute difference of
// adjacent elements
int []diff = new int[N];
for (int i = 0; i < N - 1; i++)
diff[i] = Math.abs(arr[i] - arr[i + 1]);
// Find the minimum difference of
// adjacent elements
minDifference(diff, N - 1, q, m);
}
// Driver Code
public static void main(String[] args)
{
int arr[] = { 2, 6, 1, 8, 3, 4 };
int N = arr.length;
Query Q[] = {new Query( 0, 3 ),new Query( 1, 5 ),new Query( 4, 5 ) };
int M = Q.length;
minimumDifference(arr, Q, N, M);
}
}
// This code is contributed by Princi Singh
Python3
# Python3 program for the above approach
MAX = 5000;
# Function to find the minimum difference
# between adjacent array element over the
# given range [L, R] for Q Queries
def minDifference(arr, n, q, m) :
# Find the sum of all queries
for i in range(m) :
# Left and right boundaries
# of current range
L = q[i][0]; R = q[i][1];
ans = MAX;
for i in range(L, R) :
ans = min(ans, arr[i]);
# Print the sum of the
# current query range
print(ans);
# Function to find the minimum absolute
# difference of adjacent array elements
# for the given range
def minimumDifference(arr, q, N, m) :
# Stores the absolute difference of
# adjacent elements
diff = [0]*N;
for i in range(N - 1) :
diff[i] = abs(arr[i] - arr[i + 1]);
# Find the minimum difference of
# adjacent elements
minDifference(diff, N - 1, q, m);
# Driver Code
if __name__ == "__main__" :
arr = [ 2, 6, 1, 8, 3, 4 ];
N = len(arr);
Q = [ [ 0, 3 ], [ 1, 5 ], [ 4, 5 ] ];
M = len(Q);
minimumDifference(arr, Q, N, M);
# This code is contributed by AnkThon
C#
// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG{
// Structure for query range
class Query {
public int L, R;
public Query(int l, int r) {
this.L = l;
this.R = r;
}
};
static int MAX = 5000;
// Function to find the minimum difference
// between adjacent array element over the
// given range [L, R] for Q Queries
static void minDifference(int []arr, int n,
Query []q, int m)
{
// Find the sum of all queries
for (int i = 0; i < m; i++) {
// Left and right boundaries
// of current range
int L = q[i].L, R = q[i].R;
int ans = MAX;
for (int j = L; j < R; j++) {
ans = Math.Min(ans, arr[j]);
}
// Print the sum of the
// current query range
Console.WriteLine(ans);
}
}
// Function to find the minimum absolute
// difference of adjacent array elements
// for the given range
static void minimumDifference(int []arr, Query []q,
int N, int m)
{
// Stores the absolute difference of
// adjacent elements
int []diff = new int[N];
for (int i = 0; i < N - 1; i++)
diff[i] = Math.Abs(arr[i] - arr[i + 1]);
// Find the minimum difference of
// adjacent elements
minDifference(diff, N - 1, q, m);
}
// Driver Code
public static void Main()
{
int []arr = { 2, 6, 1, 8, 3, 4 };
int N = arr.Length;
Query []Q = {new Query( 0, 3 ),new Query( 1, 5 ),new Query( 4, 5 ) };
int M = Q.Length;
minimumDifference(arr, Q, N, M);
}
}
// This code is contributed by SURENDRA_GANGWAR.
JavaScript
<script>
// JavaScript program for the above approach;
let MAX = 5000;
// Function to find the minimum difference
// between adjacent array element over the
// given range [L, R] for Q Queries
function minDifference(arr, n, q, m)
{
// Find the sum of all queries
for (let i = 0; i < m; i++) {
// Left and right boundaries
// of current range
let L = q[i][0], R = q[i][1];
let ans = MAX;
for (let i = L; i < R; i++) {
ans = Math.min(ans, arr[i]);
}
// Print the sum of the
// current query range
document.write(ans+'<br>');
}
}
// Function to find the minimum absolute
// difference of adjacent array elements
// for the given range
function minimumDifference(arr, q, N, m) {
// Stores the absolute difference of
// adjacent elements
let diff = new Array(N);
for (let i = 0; i < N - 1; i++)
diff[i] = Math.abs(arr[i] - arr[i + 1]);
// Find the minimum difference of
// adjacent elements
minDifference(diff, N - 1, q, m);
}
// Driver Code
let arr = [2, 6, 1, 8, 3, 4];
let N = arr.length;
let Q = [[0, 3], [1, 5], [4, 5]];
let M = Q.length;
minimumDifference(arr, Q, N, M);
//This code is contributed by Potta Lokesh
</script>
Time Complexity: O(N2)
Auxiliary Space: O(N)
Efficient Approach: The above approach can also be optimized by using the Sparse Table that supports query in constant time O(1) with extra space O(N log N). Instead of passing original arr[] pass diff[] to get the required answer. Follow the steps below to solve the problem:
- Initialize a global array lookup[][] for the sparse array.
- Define a function preprocess(arr, N) and perform the following operations:
- Iterate over the range [0, N) using the variable i and set the value of lookup[i][0] as i.
- Iterate over the range [1, N) using the variable j and i nestedly and if arr[lookup[i][j-1]] is less than arr[lookup[i + (1 << (j-1))][j-1], then set lookup[i][j] as lookup[i][j-1], otherwise set lookup[i][j] as lookup[i + (1 << (j - 1))][j - 1].
- Define a function query(int arr[], int L, int M) and perform the following operations:
- Initialize the variable j as (int)log2(R - L + 1).
- If arr[lookup[L][j]] is less than equal to arr[lookup[R - (1 << j) + 1][j]], then return arr[lookup[L][j]], else return arr[lookup[R - (1 << j) + 1][j]].
- Define a function Min_difference(arr, n, q, m) and perform the following operations:
- Call the function preprocess(arr, n) to preprocess the sparse array.
- Traverse the given array of queries Q[] and the value returned by the function query(arr, L, R - 1) gives the result for the current query.
- Initialize an array diff[] of size N and store the absolute differences of arr[i]-arr[i+1] for every value of i.
- Call the function Min_difference(diff, N-1, q, m) to find the minimum absolute difference for each query.
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
#define MAX 500
// Stores the index for the minimum
// value in the subarray arr[i, j]
int lookup[MAX][MAX];
// Structure for query range
struct Query {
int L, R;
};
// Function to fill the lookup array
// lookup[][] in the bottom up manner
void preprocess(int arr[], int n)
{
// Initialize M for the intervals
// with length 1
for (int i = 0; i < n; i++)
lookup[i][0] = i;
// Find the values from smaller
// to bigger intervals
for (int j = 1; (1 << j) <= n; j++) {
// Compute minimum value for
// all intervals with size 2^j
for (int i = 0; (i + (1 << j) - 1) < n; i++) {
// For arr[2][10], compare
// arr[lookup[0][3]] and
// arr[lookup[3][3]]
if (arr[lookup[i][j - 1]]
< arr[lookup[i + (1 << (j - 1))][j - 1]])
lookup[i][j] = lookup[i][j - 1];
// Otherwise
else
lookup[i][j]
= lookup[i + (1 << (j - 1))][j - 1];
}
}
}
// Function find minimum of absolute
// difference of all adjacent element
// in subarray arr[L..R]
int query(int arr[], int L, int R)
{
// For [2, 10], j = 3
int j = (int)log2(R - L + 1);
// For [2, 10], compare arr[lookup[0][3]]
// and arr[lookup[3][3]],
if (arr[lookup[L][j]]
<= arr[lookup[R - (1 << j) + 1][j]])
return arr[lookup[L][j]];
else
return arr[lookup[R - (1 << j) + 1][j]];
}
// Function to find the minimum of the
// ranges for M queries
void Min_difference(int arr[], int n,
Query q[], int m)
{
// Fills table lookup[n][Log n]
preprocess(arr, n);
// Compute sum of all queries
for (int i = 0; i < m; i++) {
// Left and right boundaries
// of current range
int L = q[i].L, R = q[i].R;
// Print sum of current query range
cout << query(arr, L, R - 1) << '\n';
}
}
// Function to find the minimum absolute
// difference in a range
void minimumDifference(int arr[], Query q[],
int N, int m)
{
// diff[] is to stores the absolute
// difference of adjacent elements
int diff[N];
for (int i = 0; i < N - 1; i++)
diff[i] = abs(arr[i] - arr[i + 1]);
// Call Min_difference to get minimum
// difference of adjacent elements
Min_difference(diff, N - 1, q, m);
}
// Driver Code
int main()
{
int arr[] = { 2, 6, 1, 8, 3, 4 };
int N = sizeof(arr) / sizeof(arr[0]);
Query Q[] = { { 0, 3 }, { 1, 5 }, { 4, 5 } };
int M = sizeof(Q) / sizeof(Q[0]);
minimumDifference(arr, Q, N, M);
return 0;
}
Java
// Java program for the above approach
import java.util.*;
import javax.management.Query;
class GFG{
static final int MAX = 500;
// Stores the index for the minimum
// value in the subarray arr[i, j]
static int [][]lookup = new int[MAX][MAX];
// Structure for query range
static class Query {
int L, R;
public Query(int l, int r) {
super();
L = l;
R = r;
}
};
// Function to fill the lookup array
// lookup[][] in the bottom up manner
static void preprocess(int arr[], int n)
{
// Initialize M for the intervals
// with length 1
for (int i = 0; i < n; i++)
lookup[i][0] = i;
// Find the values from smaller
// to bigger intervals
for (int j = 1; (1 << j) <= n; j++) {
// Compute minimum value for
// all intervals with size 2^j
for (int i = 0; (i + (1 << j) - 1) < n; i++) {
// For arr[2][10], compare
// arr[lookup[0][3]] and
// arr[lookup[3][3]]
if (arr[lookup[i][j - 1]]
< arr[lookup[i + (1 << (j - 1))][j - 1]])
lookup[i][j] = lookup[i][j - 1];
// Otherwise
else
lookup[i][j]
= lookup[i + (1 << (j - 1))][j - 1];
}
}
}
// Function find minimum of absolute
// difference of all adjacent element
// in subarray arr[L..R]
static int query(int arr[], int L, int R)
{
// For [2, 10], j = 3
int j = (int)Math.log(R - L + 1);
// For [2, 10], compare arr[lookup[0][3]]
// and arr[lookup[3][3]],
if (arr[lookup[L][j]]
<= arr[lookup[R - (1 << j) + 1][j]])
return arr[lookup[L][j]];
else
return arr[lookup[R - (1 << j) + 1][j]];
}
// Function to find the minimum of the
// ranges for M queries
static void Min_difference(int arr[], int n,
Query q[], int m)
{
// Fills table lookup[n][Log n]
preprocess(arr, n);
// Compute sum of all queries
for (int i = 0; i < m; i++) {
// Left and right boundaries
// of current range
int L = q[i].L, R = q[i].R;
// Print sum of current query range
System.out.println(query(arr, L, R - 1));
}
}
// Function to find the minimum absolute
// difference in a range
static void minimumDifference(int arr[], Query q[],
int N, int m)
{
// diff[] is to stores the absolute
// difference of adjacent elements
int []diff = new int[N];
for (int i = 0; i < N - 1; i++)
diff[i] = Math.abs(arr[i] - arr[i + 1]);
// Call Min_difference to get minimum
// difference of adjacent elements
Min_difference(diff, N - 1, q, m);
}
// Driver Code
public static void main(String[] args)
{
int arr[] = { 2, 6, 1, 8, 3, 4 };
int N = arr.length;
Query Q[] = { new Query( 0, 3 ), new Query( 1, 5 ), new Query( 4, 5 ) };
int M = Q.length;
minimumDifference(arr, Q, N, M);
}
}
// This code is contributed by 29AjayKumar
Python3
# Python program for the above approach:
import math
MAX = 500
## Structure for query range
class Query:
def __init__(self, l, r):
self.L = l
self.R = r
## Function to fill the lookup array
## lookup[][] in the bottom up manner
def preprocess(arr, n):
## Initialize M for the intervals
## with length 1
for i in range(n):
lookup[i][0] = i;
## Find the values from smaller
## to bigger intervals
j = 1
while True:
if (1 << j) > n:
break
## Compute minimum value for
## all intervals with size 2^j
for i in range(n + 1 - (1 << j)):
## For arr[2][10], compare
## arr[lookup[0][3]] and
## arr[lookup[3][3]]
if (arr[lookup[i][j - 1]] < arr[lookup[i + (1 << (j - 1))][j - 1]]):
lookup[i][j] = lookup[i][j - 1];
## Otherwise
else:
lookup[i][j] = lookup[i + (1 << (j - 1))][j - 1]
j+=1
## Function find minimum of absolute
## difference of all adjacent element
## in subarray arr[L..R]
def query(arr, L, R):
## For [2, 10], j = 3
j = int(math.log2(R - L + 1))
## For [2, 10], compare arr[lookup[0][3]]
## and arr[lookup[3][3]],
if (arr[lookup[L][j]] <= arr[lookup[R - (1 << j) + 1][j]]):
return arr[lookup[L][j]]
else:
return arr[lookup[R - (1 << j) + 1][j]]
## Function to find the minimum of the
## ranges for M queries
def Min_difference(arr, n, q, m):
## Fills table lookup[n][Log n]
preprocess(arr, n)
## Compute sum of all queries
for i in range(0, m):
## Left and right boundaries
## of current range
L = q[i].L
R = q[i].R;
## Print sum of current query range
print(query(arr, L, R - 1))
## Function to find the minimum absolute
## difference in a range
def minimumDifference(arr, q, N, m):
## diff[] is to stores the absolute
## difference of adjacent elements
diff = [];
for i in range(N):
diff.append(0)
for i in range(0, N-1):
diff[i] = abs(arr[i] - arr[i + 1]);
## Call Min_difference to get minimum
## difference of adjacent elements
Min_difference(diff, N - 1, q, m)
## Driver code
if __name__=='__main__':
arr = [ 2, 6, 1, 8, 3, 4 ]
N = len(arr)
Q = [ Query(0, 3), Query(1, 5), Query(4, 5) ]
M = len(Q)
## Stores the index for the minimum
## value in the subarray arr[i, j]
global lookup
lookup = []
for i in range(0, MAX):
lookup.append([])
for j in range(0, MAX):
lookup[i].append(0)
minimumDifference(arr, Q, N, M)
# This code is contributed by subhamgoyal2014.
C#
// C# program for the above approach
using System;
public class GFG{
static readonly int MAX = 500;
// Stores the index for the minimum
// value in the subarray arr[i, j]
static int [,]lookup = new int[MAX, MAX];
// Structure for query range
class Query {
public int L, R;
public Query(int l, int r) {
L = l;
R = r;
}
};
// Function to fill the lookup array
// lookup[,] in the bottom up manner
static void preprocess(int []arr, int n)
{
// Initialize M for the intervals
// with length 1
for (int i = 0; i < n; i++)
lookup[i,0] = i;
// Find the values from smaller
// to bigger intervals
for (int j = 1; (1 << j) <= n; j++) {
// Compute minimum value for
// all intervals with size 2^j
for (int i = 0; (i + (1 << j) - 1) < n; i++) {
// For arr[2,10], compare
// arr[lookup[0,3]] and
// arr[lookup[3,3]]
if (arr[lookup[i,j - 1]]
< arr[lookup[i + (1 << (j - 1)),j - 1]])
lookup[i,j] = lookup[i,j - 1];
// Otherwise
else
lookup[i,j]
= lookup[i + (1 << (j - 1)),j - 1];
}
}
}
// Function find minimum of absolute
// difference of all adjacent element
// in subarray arr[L..R]
static int query(int []arr, int L, int R)
{
// For [2, 10], j = 3
int j = (int)Math.Log(R - L + 1);
// For [2, 10], compare arr[lookup[0,3]]
// and arr[lookup[3,3]],
if (arr[lookup[L,j]]
<= arr[lookup[R - (1 << j) + 1,j]])
return arr[lookup[L,j]];
else
return arr[lookup[R - (1 << j) + 1,j]];
}
// Function to find the minimum of the
// ranges for M queries
static void Min_difference(int []arr, int n,
Query []q, int m)
{
// Fills table lookup[n,Log n]
preprocess(arr, n);
// Compute sum of all queries
for (int i = 0; i < m; i++) {
// Left and right boundaries
// of current range
int L = q[i].L, R = q[i].R;
// Print sum of current query range
Console.WriteLine(query(arr, L, R - 1));
}
}
// Function to find the minimum absolute
// difference in a range
static void minimumDifference(int []arr, Query []q,
int N, int m)
{
// diff[] is to stores the absolute
// difference of adjacent elements
int []diff = new int[N];
for (int i = 0; i < N - 1; i++)
diff[i] = Math.Abs(arr[i] - arr[i + 1]);
// Call Min_difference to get minimum
// difference of adjacent elements
Min_difference(diff, N - 1, q, m);
}
// Driver Code
public static void Main(String[] args)
{
int []arr = { 2, 6, 1, 8, 3, 4 };
int N = arr.Length;
Query []Q = { new Query( 0, 3 ), new Query( 1, 5 ), new Query( 4, 5 ) };
int M = Q.Length;
minimumDifference(arr, Q, N, M);
}
}
// This code is contributed by shikhasingrajput
JavaScript
<script>
// Javascript program for the above approach
let MAX = 500;
// Stores the index for the minimum
// value in the subarray arr[i, j]
let lookup = new Array(MAX).fill(0).map(() => new Array(MAX).fill(0));
// Structure for query range
class Query {
constructor(l, r) {
this.L = l;
this.R = r;
}
}
// Function to fill the lookup array
// lookup[][] in the bottom up manner
function preprocess(arr, n)
{
// Initialize M for the intervals
// with length 1
for (let i = 0; i < n; i++) lookup[i][0] = i;
// Find the values from smaller
// to bigger intervals
for (let j = 1; 1 << j <= n; j++)
{
// Compute minimum value for
// all intervals with size 2^j
for (let i = 0; i + (1 << j) - 1 < n; i++)
{
// For arr[2][10], compare
// arr[lookup[0][3]] and
// arr[lookup[3][3]]
if (arr[lookup[i][j - 1]] < arr[lookup[i + (1 << (j - 1))][j - 1]])
lookup[i][j] = lookup[i][j - 1];
// Otherwise
else lookup[i][j] = lookup[i + (1 << (j - 1))][j - 1];
}
}
}
// Function find minimum of absolute
// difference of all adjacent element
// in subarray arr[L..R]
function query(arr, L, R)
{
// For [2, 10], j = 3
let j = Math.floor(Math.log(R - L + 1));
// For [2, 10], compare arr[lookup[0][3]]
// and arr[lookup[3][3]],
if (arr[lookup[L][j]] <= arr[lookup[R - (1 << j) + 1][j]])
return arr[lookup[L][j]];
else return arr[lookup[R - (1 << j) + 1][j]];
}
// Function to find the minimum of the
// ranges for M queries
function Min_difference(arr, n, q, m)
{
// Fills table lookup[n][Log n]
preprocess(arr, n);
// Compute sum of all queries
for (let i = 0; i < m; i++)
{
// Left and right boundaries
// of current range
let L = q[i].L,
R = q[i].R;
// let sum of current query range
document.write(query(arr, L, R - 1) + "<br>");
}
}
// Function to find the minimum absolute
// difference in a range
function minimumDifference(arr, q, N, m)
{
// diff[] is to stores the absolute
// difference of adjacent elements
let diff = new Array(N);
for (let i = 0; i < N - 1; i++) diff[i] = Math.abs(arr[i] - arr[i + 1]);
// Call Min_difference to get minimum
// difference of adjacent elements
Min_difference(diff, N - 1, q, m);
}
// Driver Code
let arr = [2, 6, 1, 8, 3, 4];
let N = arr.length;
let Q = [new Query(0, 3), new Query(1, 5), new Query(4, 5)];
let M = Q.length;
minimumDifference(arr, Q, N, M);
// This code is contributed by _saurabh_jaiswal.
</script>
Time Complexity: O(N*log(N))
Auxiliary Space: O(N*N)
Similar Reads
Find minimum difference between any two elements (pair) in given array Given an unsorted array, find the minimum difference between any pair in the given array. Examples : Input: {1, 5, 3, 19, 18, 25}Output: 1Explanation: Minimum difference is between 18 and 19 Input: {30, 5, 20, 9}Output: 4Explanation: Minimum difference is between 5 and 9 Input: {1, 19, -4, 31, 38, 2
15+ min read
Split array into K subarrays with minimum sum of absolute difference between adjacent elements Given an array, arr[] of size N and an integer K, the task is to split the array into K subarrays minimizing the sum of absolute difference between adjacent elements of each subarray. Examples: Input: arr[] = {1, 3, -2, 5, -1}, K = 2Output: 13Explanation: Split the array into following 2 subarrays:
8 min read
Find minimum difference with adjacent elements in Array Given an array A[] of N integers, the task is to find min(A[0], A[1], ..., A[i-1]) - min(A[i+1], A[i+2], ..., A[n-1]) for each i (1 ⤠i ⤠N). Note: If there are no elements at the left or right of i then consider the minimum element towards that part zero. Examples: Input: N = 4, A = {8, 4, 2, 6}Out
12 min read
Minimum absolute difference of adjacent elements in a Circular Array Given a circular array arr[] of length N, the task is to find the minimum absolute difference between any adjacent pair. If there are many optimum solutions, output any of them. Examples: Input: arr[] = {10, 12, 13, 15, 10} Output: 0Explanation: |10 - 10| = 0 is the minimum possible difference. Inpu
5 min read
Find all pairs in an Array in sorted order with minimum absolute difference Given an integer array arr[] of size N, the task is to find all distinct pairs having minimum absolute difference and print them in ascending order. Examples:Input: arr[] = {4, 2, 1, 3}Output: {1, 2}, {2, 3}, {3, 4}Explanation: The minimum absolute difference between pairs is 1.Input: arr[] = {1, 3,
9 min read