Python | sympy.euler() method Last Updated : 14 Jul, 2019 Comments Improve Suggest changes Like Article Like Report With the help of sympy.euler() method, we can find the Euler number and Euler polynomial in SymPy. euler(n) - Syntax: euler(n) Parameter: n - It denotes the nth Euler number. Returns: Returns the nth Euler number. Example #1: Python3 # import sympy from sympy import * n = 4 print("Value of n = {}".format(n)) # Use sympy.euler() method nth_euler = euler(n) print("Value of nth euler number : {}".format(nth_euler)) Output: Value of n = 4 Value of nth euler number : 5 euler(n, k) - Syntax: euler(n, k) Parameter: n - It denotes the order of the Euler polynomial. k - It denotes the variable in the Euler polynomial. Returns: Returns the expression of the Euler polynomial or its value. Example #2: Python3 # import sympy from sympy import * n = 5 k = symbols('x') print("Value of n = {} and k = {}".format(n, k)) # Use sympy.euler() method nth_euler_poly = euler(n, k) print("The nth euler polynomial : {}".format(nth_euler_poly)) Output: Value of n = 5 and k = x The nth euler polynomial : x**5 - 5*x**4/2 + 5*x**2/2 - 1/2 Example #3: Python3 # import sympy from sympy import * n = 4 k = 3 print("Value of n = {} and k = {}".format(n, k)) # Use sympy.euler() method nth_euler_poly = euler(n, k) print("The nth euler polynomial value : {}".format(nth_euler_poly)) Output: Value of n = 4 and k = 3 The nth euler polynomial value : 30 Comment More infoAdvertise with us Next Article Python | sympy.evalf() method R rupesh_rao Follow Improve Article Tags : Python SymPy Practice Tags : python Similar Reads Python | sympy.evalf() method With the help of sympy.evalf() method, we are able to evaluate the mathematical expressions. Syntax : sympy.evalf() Return : Return the evaluated mathematical expression. Example #1 : In this example we can see that by using sympy.evalf() method, we are able to evaluate the mathematical expressions. 1 min read Python | sympy.evalf() method With the help of sympy.evalf() method, we are able to evaluate the mathematical expressions. Syntax : sympy.evalf() Return : Return the evaluated mathematical expression. Example #1 : In this example we can see that by using sympy.evalf() method, we are able to evaluate the mathematical expressions. 1 min read Python | sympy.Integer() method With the help of sympy.Integer() method, we can convert the floating point to integer values and this method very efficient in term of memory if we want to save integer value. Syntax : sympy.Integer() Return : Return integer value. Example #1 : In this example we can see that by using sympy.Integer( 1 min read Python | sympy.Integer() method With the help of sympy.Integer() method, we can convert the floating point to integer values and this method very efficient in term of memory if we want to save integer value. Syntax : sympy.Integer() Return : Return integer value. Example #1 : In this example we can see that by using sympy.Integer( 1 min read Python | sympy.core() method With the help of sympy.core() method, we can calculate the core_t(n) of a positive integer n. core(n, t) calculates the t-th power free part of n. If nâs prime factorization is : n = \prod_{i=1}^\omega p_i^{m_i} then core_t(n) = \prod_{i=1}^\omega p_i^{m_i \mod t} Syntax: core(n, t=2) Parameter: n - 1 min read Python | sympy.core() method With the help of sympy.core() method, we can calculate the core_t(n) of a positive integer n. core(n, t) calculates the t-th power free part of n. If nâs prime factorization is : n = \prod_{i=1}^\omega p_i^{m_i} then core_t(n) = \prod_{i=1}^\omega p_i^{m_i \mod t} Syntax: core(n, t=2) Parameter: n - 1 min read Like