Python - seaborn.boxenplot() method Last Updated : 15 Jul, 2025 Comments Improve Suggest changes Like Article Like Report Prerequisite : Fundamentals of Seaborn Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics. There is just something extraordinary about a well-designed visualization. The colors stand out, the layers blend nicely together, the contours flow throughout, and the overall package not only has a nice aesthetic quality, but it provides meaningful insights to us as well. seaborn.boxenplot() Draw an enhanced box plot for larger datasets. This style of plot was originally named a "letter value" plot because it shows a large number of quantiles that are defined as "letter values". It is similar to a box plot in plotting a nonparametric representation of a distribution in which all features correspond to actual observations. By plotting more quantiles, it provides more information about the shape of the distribution, particularly in the tails. Syntax : seaborn.boxenplot(parameters) Parameters : x, y, hue : Inputs for plotting long-form data. data : Dataset for plotting. order, hue_order : Order to plot the categorical levels in, otherwise the levels are inferred from the data objects. orient : Orientation of the plot (vertical or horizontal). color : Color for all of the elements, or seed for a gradient palette. palette : Colors to use for the different levels of the hue variable. saturation : Proportion of the original saturation to draw colors at. width : Width of a full element when not using hue nesting, or width of all the elements for one level of the major grouping variable. dodge : When hue nesting is used, whether elements should be shifted along the categorical axis. k_depth : The number of boxes, and by extension number of percentiles, to draw. linewidth : Width of the gray lines that frame the plot elements. scale : Method to use for the width of the letter value boxes. outlier_prop : Proportion of data believed to be outliers. showfliers : If False, suppress the plotting of outliers. ax : Axes object to draw the plot onto, otherwise uses the current Axes. kwargs : Other keyword arguments Returns : Returns the Axes object with the plot drawn onto it. Below is the implementation of above method with some examples : Example 1: python3 # importing packages import seaborn as sns import matplotlib.pyplot as plt # loading dataset data = sns.load_dataset("tips") # plot the boxenplot sns.boxenplot(x = "day", y = "total_bill", data = data) plt.show() Output : Example 2: python3 # importing packages import seaborn as sns import matplotlib.pyplot as plt # loading dataset data = sns.load_dataset("tips") # plot the boxenplot # hue by sex # width of 0.8 sns.boxenplot(x ="day", y = "total_bill", hue = "sex", data = data, width = 0.8) plt.show() Output : Example 3: python3 # importing packages import seaborn as sns import matplotlib.pyplot as plt # loading dataset data = sns.load_dataset("tips") # plot the boxenplot # orient to horizontal sns.boxenplot(x = "total_bill", y = "size", data = data, orient ="h") plt.show() Output : Comment More infoAdvertise with us D deepanshu_rustagi Follow Improve Article Tags : Python Python-Seaborn Practice Tags : python Explore Python FundamentalsPython Introduction 3 min read Input and Output in Python 4 min read Python Variables 5 min read Python Operators 5 min read Python Keywords 2 min read Python Data Types 8 min read Conditional Statements in Python 3 min read Loops in Python - For, While and Nested Loops 7 min read Python Functions 5 min read Recursion in Python 6 min read Python Lambda Functions 5 min read Python Data StructuresPython String 5 min read Python Lists 5 min read Python Tuples 4 min read Dictionaries in Python 3 min read Python Sets 6 min read Python Arrays 7 min read List Comprehension in Python 4 min read Advanced PythonPython OOP Concepts 10 min read Python Exception Handling 6 min read File Handling in Python 4 min read Python Database Tutorial 4 min read Python MongoDB Tutorial 2 min read Python MySQL 9 min read Python Packages 12 min read Python Modules 7 min read Python DSA Libraries 15 min read List of Python GUI Library and Packages 11 min read Data Science with PythonNumPy Tutorial - Python Library 3 min read Pandas Tutorial 6 min read Matplotlib Tutorial 5 min read Python Seaborn Tutorial 15+ min read StatsModel Library- Tutorial 4 min read Learning Model Building in Scikit-learn 8 min read TensorFlow Tutorial 2 min read PyTorch Tutorial 7 min read Web Development with PythonFlask Tutorial 8 min read Django Tutorial | Learn Django Framework 7 min read Django ORM - Inserting, Updating & Deleting Data 4 min read Templating With Jinja2 in Flask 6 min read Django Templates 7 min read Python | Build a REST API using Flask 3 min read How to Create a basic API using Django Rest Framework ? 4 min read Python PracticePython Quiz 3 min read Python Coding Practice 1 min read Python Interview Questions and Answers 15+ min read Like