Python - PyTorch clamp() method
Last Updated :
26 May, 2020
PyTorch
torch.clamp()
method clamps all the input elements into the range [ min, max ] and return a resulting tensor.
Syntax: torch.clamp(inp, min, max, out=None)
Arguments
- inp: This is input tensor.
- min: This is a number and specifies the lower-bound of the range to which input to be clamped.
- max: This is a number and specifies the upper-bound of the range to which input to be clamped.
- out: The output tensor.
Return: It returns a Tensor.
Let's see this concept with the help of few examples:
Example 1:
Python3
# Importing the PyTorch library
import torch
# A constant tensor of size n
a = torch.randn(6)
print(a)
# Applying the clamp function and
# storing the result in 'out'
out = torch.clamp(a, min = 0.5, max = 0.9)
print(out)
Output:
-0.9214
-0.1268
1.1570
-0.2753
-0.0746
0.7957
[torch.FloatTensor of size 6]
0.5000
0.5000
0.9000
0.5000
0.5000
0.7957
[torch.FloatTensor of size 6]
Example 2:
Python3
# Importing the PyTorch library
import torch
# A constant tensor of size n
a = torch.FloatTensor([1, 4, 6, 8, 10, 14])
print(a)
# Applying the clamp function and
# storing the result in 'out'
out = torch.clamp(a, min = 5, max = 10)
print(out)
Output:
1
4
6
8
10
14
[torch.FloatTensor of size 6]
5
5
6
8
10
10
[torch.FloatTensor of size 6]?