Python - PyTorch clamp() method
Last Updated :
26 May, 2020
Improve
PyTorch
Python3
Output:
Python3
Output:
torch.clamp()
method clamps all the input elements into the range [ min, max ] and return a resulting tensor.

Syntax:Let's see this concept with the help of few examples: Example 1:torch.clamp(inp, min, max, out=None)
ArgumentsReturn: It returns a Tensor.
- inp: This is input tensor.
- min: This is a number and specifies the lower-bound of the range to which input to be clamped.
- max: This is a number and specifies the upper-bound of the range to which input to be clamped.
- out: The output tensor.
# Importing the PyTorch library
import torch
# A constant tensor of size n
a = torch.randn(6)
print(a)
# Applying the clamp function and
# storing the result in 'out'
out = torch.clamp(a, min = 0.5, max = 0.9)
print(out)
# Importing the PyTorch library
import torch
# A constant tensor of size n
a = torch.randn(6)
print(a)
# Applying the clamp function and
# storing the result in 'out'
out = torch.clamp(a, min = 0.5, max = 0.9)
print(out)
-0.9214 -0.1268 1.1570 -0.2753 -0.0746 0.7957 [torch.FloatTensor of size 6] 0.5000 0.5000 0.9000 0.5000 0.5000 0.7957 [torch.FloatTensor of size 6]Example 2:
# Importing the PyTorch library
import torch
# A constant tensor of size n
a = torch.FloatTensor([1, 4, 6, 8, 10, 14])
print(a)
# Applying the clamp function and
# storing the result in 'out'
out = torch.clamp(a, min = 5, max = 10)
print(out)
# Importing the PyTorch library
import torch
# A constant tensor of size n
a = torch.FloatTensor([1, 4, 6, 8, 10, 14])
print(a)
# Applying the clamp function and
# storing the result in 'out'
out = torch.clamp(a, min = 5, max = 10)
print(out)
1 4 6 8 10 14 [torch.FloatTensor of size 6] 5 5 6 8 10 10 [torch.FloatTensor of size 6]?