Python | Pandas Working With Text Data
Last Updated :
23 Jul, 2025
Series and Indexes are equipped with a set of string processing methods that make it easy to operate on each element of the array. Perhaps most importantly, these methods exclude missing/NA values automatically. These are accessed via the str attribute and generally, have names matching the equivalent (scalar) built-in string methods.
Lowercasing and Uppercasing a DataIn order to lowercase a data, we use str.lower() this function converts all uppercase characters to lowercase. If no uppercase characters exist, it returns the original string. In order to uppercase a data, we use str.upper() this function converts all lowercase characters to uppercase. If no lowercase characters exist, it returns the original string.
Code #1:
Python
# Import pandas package
import pandas as pd
# Define a dictionary containing employee data
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj'],
'Age':[27, 24, 22, 32],
'Address':['Delhi', 'Kanpur', 'Allahabad', 'Kannauj'],
'Qualification':['Msc', 'MA', 'MCA', 'Phd']}
# Convert the dictionary into DataFrame
df = pd.DataFrame(data)
# converting and overwriting values in column
df["Name"]= df["Name"].str.lower()
print(df)
Output :
As shown in the output image of the data frame, all values in the name column have been converted into lower case.

In this example, we are using nba.csv
file.
Code #2:
Python
# importing pandas package
import pandas as pd
# making data frame from csv file
data = pd.read_csv("nba.csv")
# converting and overwriting values in column
data["Team"]= data["Team"].str.upper()
# display
data
Output :
As shown in the output image of data frame, all values in the Team column have been converted into upper case.

Splitting and Replacing a Data
In order to split a data, we use str.split() this function returns a list of strings after breaking the given string by the specified separator but it can only be applied to an individual string. Pandas str.split()
method can be applied to a whole series. .str has to be prefixed every time before calling this method to differentiate it from the Python’s default function otherwise, it will throw an error. In order to replace a data, we use str.replace() this function works like Python
.replace()
method only, but it works on Series too. Before calling .replace()
on a Pandas series, .str has to be prefixed in order to differentiate it from the Python’s default replace method.
Code #1:
Python
# importing pandas module
import pandas as pd
# Define a dictionary containing employee data
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj'],
'Age':[27, 24, 22, 32],
'Address':['Nagpur', 'Kanpur', 'Allahabad', 'Knnuaj'],
'Qualification':['Msc', 'MA', 'MCA', 'Phd']}
# Convert the dictionary into DataFrame
df = pd.DataFrame(data)
# dropping null value columns to avoid errors
df.dropna(inplace = True)
# new data frame with split value columns
df["Address"]= df["Address"].str.split("a", n = 1, expand = True)
# df display
print(df)
Output :
As shown in the output image, the Address column was separated at the first occurrence of “a” and not on the later occurrence since the n parameter was set to 1 (Max 1 separation in a string).

Code #2:
Python
# importing pandas module
import pandas as pd
# reading csv file from url
data = pd.read_csv("nba.csv")
# overwriting column with replaced value of age
data["Age"]= data["Age"].replace(25.0, "Twenty five")
# creating a filter for age column
# where age = "Twenty five"
filter = data["Age"]=="Twenty five"
# printing only filtered columns
data.where(filter).dropna()
Output :
As shown in the output image, all the values in Age column having age=25.0 have been replaced by “Twenty five”.

Concatenation of Data
In order to concatenate a Series or Index, we use str.cat() this function is used to concatenate strings to the passed caller series of string. Distinct values from a different series can be passed but the length of both the series has to be same. .str has to be prefixed to differentiate it from the Python’s default method.
Code #1:
Python
# importing pandas module
import pandas as pd
# Define a dictionary containing employee data
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj'],
'Age':[27, 24, 22, 32],
'Address':['Nagpur', 'Kanpur', 'Allahabad', 'Kannuaj'],
'Qualification':['Msc', 'MA', 'MCA', 'Phd']}
# Convert the dictionary into DataFrame
df = pd.DataFrame(data)
# making copy of address column
new = df["Address"].copy()
# concatenating address with name column
# overwriting name column
df["Name"]= df["Name"].str.cat(new, sep =", ")
# display
print(df)
Output :
As shown in the output image, every string in the Address column having same index as string in Name column have been concatenated with separator “, “
.

Code #2:
Python
# importing pandas module
import pandas as pd
# importing csv from link
data = pd.read_csv("nba.csv")
# making copy of team column
new = data["Team"].copy()
# concatenating team with name column
# overwriting name column
data["Name"]= data["Name"].str.cat(new, sep =", ")
# display
data
Output:
As shown in the output image, every string in the Team column having same index as string in Name column have been concatenated with separator “, “.

Removing Whitespaces of Data
In order to remove a whitespaces, we use str.strip(), str.rstrip(), str.lstrip() these function used to handle white spaces(including New line) in any text data. As it can be seen in the name, str.lstrip() is used to remove spaces from the left side of string, str.rstrip() to remove spaces from right side of the string and str.strip() removes spaces from both sides. Since these are pandas function with same name as Python’s default functions, .str has to be prefixed to tell the compiler that a Pandas function is being called.
Code #1:
Python
# importing pandas module
import pandas as pd
# Define a dictionary containing employee data
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj'],
'Age':[27, 24, 22, 32],
'Address':['Nagpur junction', 'Kanpur junction',
'Nagpur junction', 'Kannuaj junction'],
'Qualification':['Msc', 'MA', 'MCA', 'Phd']}
# Convert the dictionary into DataFrame
df = pd.DataFrame(data)
# replacing address name and adding spaces in start and end
new = df["Address"].replace("Nagpur junction", " Nagpur junction ").copy()
# checking with custom string
print(new.str.strip()==" Nagpur junction")
print(new.str.strip()=="Nagpur junction ")
print(new.str.strip()==" Nagpur junction ")
Output :
As shown in the output image, the comparison is returning False for all 3 conditions, which means the spaces were successfully removed from both sides and the string is no longer having spaces.

Code #2:
Python
# importing pandas module
import pandas as pd
# making data frame
data = pd.read_csv("nba.csv")
# replacing team name and adding spaces in start and end
new = data["Team"].replace("Boston Celtics", " Boston Celtics ").copy()
# checking with custom removed space string
new.str.lstrip()=="Boston Celtics "
Output :
As shown in the output image, the comparison is true after removing the left side spaces.

Extracting a Data
In order to extract a data, we use str.extract() this function accepts a regular expression with at least one capture group. Extracting a regular expression with more than one group returns a DataFrame with one column per group. Elements that do not match return a row filled with NaN.
Code #1:
Python
# importing pandas module
import pandas as pd
# creating a series
s = pd.Series(['a1', 'b2', 'c3'])
# Extracting a data
n= s.str.extract(r'([ab])(\d)')
print(n)
Output :
As shown in the output image, that two groups will return a DataFrame with two columns. Non-matches will be NaN.

Code #2:
Python
# importing pandas module
import pandas as pd
# creating a series
s = pd.Series(['a1', 'b2', 'c3'])
# Extracting a data
n = s.str.extract(r'(?P<Geeks>[ab])(?P<For>\d)')
print(n)
Output :
As shown in the output image, that named groups will become column names in the result.

Pandas str methods:
FUNCTION | DESCRIPTION |
---|
str.lower() | Method to convert a string’s characters to lowercase |
str.upper() | Method to convert a string’s characters to uppercase |
str.find() | Method is used to search a substring in each string present in a series |
str.rfind() | Method is used to search a substring in each string present in a series from the Right side |
str.findall() | Method is also used to find substrings or separators in each string in a series |
str.isalpha() | Method is used to check if all characters in each string in series are alphabetic(a-z/A-Z) |
str.isdecimal() | Method is used to check whether all characters in a string are decimal |
str.title() | Method to capitalize the first letter of every word in a string |
str.len() | Method returns a count of the number of characters in a string |
str.replace() | Method replaces a substring within a string with another value that the user provides |
str.contains() | Method tests if pattern or regex is contained within a string of a Series or Index |
str.extract() | Extract groups from the first match of regular expression pattern. |
str.startswith() | Method tests if the start of each string element matches a pattern |
str.endswith() | Method tests if the end of each string element matches a pattern |
str.isdigit() | Method is used to check if all characters in each string in series are digits |
str.lstrip() | Method removes whitespace from the left side (beginning) of a string |
str.rstrip() | Method removes whitespace from the right side (end) of a string |
str.strip() | Method to remove leading and trailing whitespace from string |
str.split() | Method splits a string value, based on an occurrence of a user-specified value |
str.join() | Method is used to join all elements in list present in a series with passed delimiter |
str.cat() | Method is used to concatenate strings to the passed caller series of string. |
str.repeat() | Method is used to repeat string values in the same position of passed series itself |
str.get() | Method is used to get element at the passed position |
str.partition() | Method splits the string only at the first occurrence unlike str.split() |
str.rpartition() | Method splits string only once and that too reversely. It works in a similar way like str.partition() and str.split() |
str.pad() | Method to add padding (whitespaces or other characters) to every string element in a series |
str.swapcase() | Method to swap case of each string in a series |
Similar Reads
Python Tutorial - Learn Python Programming Language Python is one of the most popular programming languages. Itâs simple to use, packed with features and supported by a wide range of libraries and frameworks. Its clean syntax makes it beginner-friendly. It'sA high-level language, used in web development, data science, automation, AI and more.Known fo
10 min read
Python Fundamentals
Python IntroductionPython was created by Guido van Rossum in 1991 and further developed by the Python Software Foundation. It was designed with focus on code readability and its syntax allows us to express concepts in fewer lines of code.Key Features of PythonPythonâs simple and readable syntax makes it beginner-frien
3 min read
Input and Output in PythonUnderstanding input and output operations is fundamental to Python programming. With the print() function, we can display output in various formats, while the input() function enables interaction with users by gathering input during program execution. Taking input in PythonPython's input() function
7 min read
Python VariablesIn Python, variables are used to store data that can be referenced and manipulated during program execution. A variable is essentially a name that is assigned to a value. Unlike many other programming languages, Python variables do not require explicit declaration of type. The type of the variable i
6 min read
Python OperatorsIn Python programming, Operators in general are used to perform operations on values and variables. These are standard symbols used for logical and arithmetic operations. In this article, we will look into different types of Python operators. OPERATORS: These are the special symbols. Eg- + , * , /,
6 min read
Python KeywordsKeywords in Python are reserved words that have special meanings and serve specific purposes in the language syntax. Python keywords cannot be used as the names of variables, functions, and classes or any other identifier. Getting List of all Python keywordsWe can also get all the keyword names usin
2 min read
Python Data TypesPython Data types are the classification or categorization of data items. It represents the kind of value that tells what operations can be performed on a particular data. Since everything is an object in Python programming, Python data types are classes and variables are instances (objects) of thes
9 min read
Conditional Statements in PythonConditional statements in Python are used to execute certain blocks of code based on specific conditions. These statements help control the flow of a program, making it behave differently in different situations.If Conditional Statement in PythonIf statement is the simplest form of a conditional sta
6 min read
Loops in Python - For, While and Nested LoopsLoops in Python are used to repeat actions efficiently. The main types are For loops (counting through items) and While loops (based on conditions). In this article, we will look at Python loops and understand their working with the help of examples. For Loop in PythonFor loops is used to iterate ov
9 min read
Python FunctionsPython Functions is a block of statements that does a specific task. The idea is to put some commonly or repeatedly done task together and make a function so that instead of writing the same code again and again for different inputs, we can do the function calls to reuse code contained in it over an
9 min read
Recursion in PythonRecursion involves a function calling itself directly or indirectly to solve a problem by breaking it down into simpler and more manageable parts. In Python, recursion is widely used for tasks that can be divided into identical subtasks.In Python, a recursive function is defined like any other funct
6 min read
Python Lambda FunctionsPython Lambda Functions are anonymous functions means that the function is without a name. As we already know the def keyword is used to define a normal function in Python. Similarly, the lambda keyword is used to define an anonymous function in Python. In the example, we defined a lambda function(u
6 min read
Python Data Structures
Python StringA string is a sequence of characters. Python treats anything inside quotes as a string. This includes letters, numbers, and symbols. Python has no character data type so single character is a string of length 1.Pythons = "GfG" print(s[1]) # access 2nd char s1 = s + s[0] # update print(s1) # printOut
6 min read
Python ListsIn Python, a list is a built-in dynamic sized array (automatically grows and shrinks). We can store all types of items (including another list) in a list. A list may contain mixed type of items, this is possible because a list mainly stores references at contiguous locations and actual items maybe s
6 min read
Python TuplesA tuple in Python is an immutable ordered collection of elements. Tuples are similar to lists, but unlike lists, they cannot be changed after their creation (i.e., they are immutable). Tuples can hold elements of different data types. The main characteristics of tuples are being ordered , heterogene
6 min read
Dictionaries in PythonPython dictionary is a data structure that stores the value in key: value pairs. Values in a dictionary can be of any data type and can be duplicated, whereas keys can't be repeated and must be immutable. Example: Here, The data is stored in key:value pairs in dictionaries, which makes it easier to
7 min read
Python SetsPython set is an unordered collection of multiple items having different datatypes. In Python, sets are mutable, unindexed and do not contain duplicates. The order of elements in a set is not preserved and can change.Creating a Set in PythonIn Python, the most basic and efficient method for creating
10 min read
Python ArraysLists in Python are the most flexible and commonly used data structure for sequential storage. They are similar to arrays in other languages but with several key differences:Dynamic Typing: Python lists can hold elements of different types in the same list. We can have an integer, a string and even
9 min read
List Comprehension in PythonList comprehension is a way to create lists using a concise syntax. It allows us to generate a new list by applying an expression to each item in an existing iterable (such as a list or range). This helps us to write cleaner, more readable code compared to traditional looping techniques.For example,
4 min read
Advanced Python
Python OOPs ConceptsObject Oriented Programming is a fundamental concept in Python, empowering developers to build modular, maintainable, and scalable applications. OOPs is a way of organizing code that uses objects and classes to represent real-world entities and their behavior. In OOPs, object has attributes thing th
11 min read
Python Exception HandlingPython Exception Handling handles errors that occur during the execution of a program. Exception handling allows to respond to the error, instead of crashing the running program. It enables you to catch and manage errors, making your code more robust and user-friendly. Let's look at an example:Handl
6 min read
File Handling in PythonFile handling refers to the process of performing operations on a file, such as creating, opening, reading, writing and closing it through a programming interface. It involves managing the data flow between the program and the file system on the storage device, ensuring that data is handled safely a
4 min read
Python Database TutorialPython being a high-level language provides support for various databases. We can connect and run queries for a particular database using Python and without writing raw queries in the terminal or shell of that particular database, we just need to have that database installed in our system.A database
4 min read
Python MongoDB TutorialMongoDB is a popular NoSQL database designed to store and manage data flexibly and at scale. Unlike traditional relational databases that use tables and rows, MongoDB stores data as JSON-like documents using a format called BSON (Binary JSON). This document-oriented model makes it easy to handle com
2 min read
Python MySQLMySQL is a widely used open-source relational database for managing structured data. Integrating it with Python enables efficient data storage, retrieval and manipulation within applications. To work with MySQL in Python, we use MySQL Connector, a driver that enables seamless integration between the
9 min read
Python PackagesPython packages are a way to organize and structure code by grouping related modules into directories. A package is essentially a folder that contains an __init__.py file and one or more Python files (modules). This organization helps manage and reuse code effectively, especially in larger projects.
12 min read
Python ModulesPython Module is a file that contains built-in functions, classes,its and variables. There are many Python modules, each with its specific work.In this article, we will cover all about Python modules, such as How to create our own simple module, Import Python modules, From statements in Python, we c
7 min read
Python DSA LibrariesData Structures and Algorithms (DSA) serve as the backbone for efficient problem-solving and software development. Python, known for its simplicity and versatility, offers a plethora of libraries and packages that facilitate the implementation of various DSA concepts. In this article, we'll delve in
15 min read
List of Python GUI Library and PackagesGraphical User Interfaces (GUIs) play a pivotal role in enhancing user interaction and experience. Python, known for its simplicity and versatility, has evolved into a prominent choice for building GUI applications. With the advent of Python 3, developers have been equipped with lots of tools and li
11 min read
Data Science with Python
NumPy Tutorial - Python LibraryNumPy (short for Numerical Python ) is one of the most fundamental libraries in Python for scientific computing. It provides support for large, multi-dimensional arrays and matrices along with a collection of mathematical functions to operate on arrays.At its core it introduces the ndarray (n-dimens
3 min read
Pandas TutorialPandas is an open-source software library designed for data manipulation and analysis. It provides data structures like series and DataFrames to easily clean, transform and analyze large datasets and integrates with other Python libraries, such as NumPy and Matplotlib. It offers functions for data t
6 min read
Matplotlib TutorialMatplotlib is an open-source visualization library for the Python programming language, widely used for creating static, animated and interactive plots. It provides an object-oriented API for embedding plots into applications using general-purpose GUI toolkits like Tkinter, Qt, GTK and wxPython. It
5 min read
Python Seaborn TutorialSeaborn is a library mostly used for statistical plotting in Python. It is built on top of Matplotlib and provides beautiful default styles and color palettes to make statistical plots more attractive.In this tutorial, we will learn about Python Seaborn from basics to advance using a huge dataset of
15+ min read
StatsModel Library- TutorialStatsmodels is a useful Python library for doing statistics and hypothesis testing. It provides tools for fitting various statistical models, performing tests and analyzing data. It is especially used for tasks in data science ,economics and other fields where understanding data is important. It is
4 min read
Learning Model Building in Scikit-learnBuilding machine learning models from scratch can be complex and time-consuming. Scikit-learn which is an open-source Python library which helps in making machine learning more accessible. It provides a straightforward, consistent interface for a variety of tasks like classification, regression, clu
8 min read
TensorFlow TutorialTensorFlow is an open-source machine-learning framework developed by Google. It is written in Python, making it accessible and easy to understand. It is designed to build and train machine learning (ML) and deep learning models. It is highly scalable for both research and production.It supports CPUs
2 min read
PyTorch TutorialPyTorch is an open-source deep learning framework designed to simplify the process of building neural networks and machine learning models. With its dynamic computation graph, PyTorch allows developers to modify the networkâs behavior in real-time, making it an excellent choice for both beginners an
7 min read
Web Development with Python
Flask TutorialFlask is a lightweight and powerful web framework for Python. Itâs often called a "micro-framework" because it provides the essentials for web development without unnecessary complexity. Unlike Django, which comes with built-in features like authentication and an admin panel, Flask keeps things mini
8 min read
Django Tutorial | Learn Django FrameworkDjango is a Python framework that simplifies web development by handling complex tasks for you. It follows the "Don't Repeat Yourself" (DRY) principle, promoting reusable components and making development faster. With built-in features like user authentication, database connections, and CRUD operati
10 min read
Django ORM - Inserting, Updating & Deleting DataDjango's Object-Relational Mapping (ORM) is one of the key features that simplifies interaction with the database. It allows developers to define their database schema in Python classes and manage data without writing raw SQL queries. The Django ORM bridges the gap between Python objects and databas
4 min read
Templating With Jinja2 in FlaskFlask is a lightweight WSGI framework that is built on Python programming. WSGI simply means Web Server Gateway Interface. Flask is widely used as a backend to develop a fully-fledged Website. And to make a sure website, templating is very important. Flask is supported by inbuilt template support na
6 min read
Django TemplatesTemplates are the third and most important part of Django's MVT Structure. A Django template is basically an HTML file that can also include CSS and JavaScript. The Django framework uses these templates to dynamically generate web pages that users interact with. Since Django primarily handles the ba
7 min read
Python | Build a REST API using FlaskPrerequisite: Introduction to Rest API REST stands for REpresentational State Transfer and is an architectural style used in modern web development. It defines a set or rules/constraints for a web application to send and receive data. In this article, we will build a REST API in Python using the Fla
3 min read
How to Create a basic API using Django Rest Framework ?Django REST Framework (DRF) is a powerful extension of Django that helps you build APIs quickly and easily. It simplifies exposing your Django models as RESTfulAPIs, which can be consumed by frontend apps, mobile clients or other services.Before creating an API, there are three main steps to underst
4 min read
Python Practice
Python QuizThese Python quiz questions are designed to help you become more familiar with Python and test your knowledge across various topics. From Python basics to advanced concepts, these topic-specific quizzes offer a comprehensive way to practice and assess your understanding of Python concepts. These Pyt
3 min read
Python Coding Practice ProblemsThis collection of Python coding practice problems is designed to help you improve your overall programming skills in Python.The links below lead to different topic pages, each containing coding problems, and this page also includes links to quizzes. You need to log in first to write your code. Your
1 min read
Python Interview Questions and AnswersPython is the most used language in top companies such as Intel, IBM, NASA, Pixar, Netflix, Facebook, JP Morgan Chase, Spotify and many more because of its simplicity and powerful libraries. To crack their Online Assessment and Interview Rounds as a Python developer, we need to master important Pyth
15+ min read