Python | pandas.to_numeric method Last Updated : 17 Dec, 2018 Comments Improve Suggest changes Like Article Like Report Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. pandas.to_numeric() is one of the general functions in Pandas which is used to convert argument to a numeric type. Syntax: pandas.to_numeric(arg, errors='raise', downcast=None) Parameters: arg : list, tuple, 1-d array, or Series errors : {‘ignore’, ‘raise’, ‘coerce’}, default ‘raise’ -> If ‘raise’, then invalid parsing will raise an exception -> If ‘coerce’, then invalid parsing will be set as NaN -> If ‘ignore’, then invalid parsing will return the input downcast : [default None] If not None, and if the data has been successfully cast to a numerical dtype downcast that resulting data to the smallest numerical dtype possible according to the following rules: -> ‘integer’ or ‘signed’: smallest signed int dtype (min.: np.int8) -> ‘unsigned’: smallest unsigned int dtype (min.: np.uint8) -> ‘float’: smallest float dtype (min.: np.float32) Returns: numeric if parsing succeeded. Note that return type depends on input. Series if Series, otherwise ndarray. Code #1: Observe this dataset first. We'll use 'Numbers' column of this data in order to make Series and then do the operation. Python3 1== # importing pandas module import pandas as pd # making data frame df = pd.read_csv("https://media.geeksforgeeks.org/wp-content/uploads/nba.csv") df.head(10) Calling Series constructor on Number column and then selecting first 10 rows. Python3 1== # importing pandas module import pandas as pd # making data frame df = pd.read_csv("nba.csv") # get first ten 'numbers' ser = pd.Series(df['Number']).head(10) ser Output: Using pd.to_numeric() method. Observe that by using downcast='signed', all the values will be casted to integer. Python3 1== pd.to_numeric(ser, downcast ='signed') Output: Code #2: Using errors='ignore'. It will ignore all non-numeric values. Python3 1== # importing pandas module import pandas as pd # get first ten 'numbers' ser = pd.Series(['Geeks', 11, 22.7, 33]) pd.to_numeric(ser, errors ='ignore') Output: Code #3: Using errors='coerce'. It will replace all non-numeric values with NaN. Python3 1== # importing pandas module import pandas as pd # get first ten 'numbers' ser = pd.Series(['Geeks', 11, 22.7, 33]) pd.to_numeric(ser, errors ='coerce') Output: Comment More info S Shivam_k Follow Improve Article Tags : Python Python-pandas Python pandas-general-functions Explore Python FundamentalsPython Introduction 3 min read Input and Output in Python 4 min read Python Variables 5 min read Python Operators 5 min read Python Keywords 2 min read Python Data Types 7 min read Conditional Statements in Python 3 min read Loops in Python - For, While and Nested Loops 6 min read Python Functions 5 min read Recursion in Python 4 min read Python Lambda Functions 5 min read Python Data StructuresPython String 5 min read Python Lists 4 min read Python Tuples 4 min read Python Dictionary 3 min read Python Sets 6 min read Python Arrays 7 min read List Comprehension in Python 4 min read Advanced PythonPython OOP Concepts 11 min read Python Exception Handling 5 min read File Handling in Python 4 min read Python Database Tutorial 4 min read Python MongoDB Tutorial 2 min read Python MySQL 9 min read Python Packages 12 min read Python Modules 7 min read Python DSA Libraries 15 min read List of Python GUI Library and Packages 3 min read Data Science with PythonNumPy Tutorial - Python Library 3 min read Pandas Tutorial 6 min read Matplotlib Tutorial 5 min read Python Seaborn Tutorial 15+ min read StatsModel Library- Tutorial 4 min read Learning Model Building in Scikit-learn 8 min read TensorFlow Tutorial 2 min read PyTorch Tutorial 6 min read Web Development with PythonFlask Tutorial 8 min read Django Tutorial | Learn Django Framework 7 min read Django ORM - Inserting, Updating & Deleting Data 4 min read Templating With Jinja2 in Flask 6 min read Django Templates 7 min read Python | Build a REST API using Flask 3 min read How to Create a basic API using Django Rest Framework ? 4 min read Python PracticePython Quiz 3 min read Python Coding Practice 1 min read Python Interview Questions and Answers 15+ min read Like