pandas.isna() function in Python Last Updated : 14 Aug, 2020 Summarize Comments Improve Suggest changes Share Like Article Like Report This method is used to detect missing values for an array-like object. This function takes a scalar or array-like object and indicates whether values are missing (``NaN`` in numeric arrays, ``None`` or ``NaN`` in object arrays, ``NaT`` in datetimelike). Syntax : pandas.isna(obj) Argument : obj : scalar or array-like, Object to check for null or missing values. Below is the implementation of the above method with some examples : Example 1 : Python3 # importing package import numpy import pandas # string "deep" is not nan value print(pandas.isna("deep")) # numpy.nan represents a nan value print(pandas.isna(numpy.nan)) Output : False True Example 2 : Python3 # importing package import numpy import pandas # create and view data array = numpy.array([[1, numpy.nan, 3], [4, 5, numpy.nan]]) print(array) # numpy.nan represents a nan value print(pandas.isna(array)) Output : [[ 1. nan 3.] [ 4. 5. nan]] [[False True False] [False False True]] Comment More infoAdvertise with us Next Article Python | Pandas Index.is_categorical() D deepanshu_rustagi Follow Improve Article Tags : Python Python-pandas Practice Tags : python Similar Reads Python | Pandas Index.contains() Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas Index.contains() function return a boolean indicating whether the provided key 2 min read Python - cmath.isnan() function cMath module contains a number of functions which is used for mathematical operations for complex numbers. The cmath.isnan() function is used to check whether the value is nan (Not a Number), or not. The value passed in this function can be int, float, and complex numbers. Syntax: cmath.isnan(x) Par 1 min read Python | Pandas Index.isin() Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas Index.isin() function return a boolean array where the index values are in valu 2 min read Python | Pandas Index.notna() Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.Pandas Index.notna() function Detect existing (non-missing) values. Return a boolean sa 2 min read Python | Pandas Index.is_categorical() Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas Index.is_categorical() function checks if the index holds categorical data. Cat 2 min read Pandas Index.isnull()-Python Index.isnull() function in pandas detects missing values (NaN or None) in a pandas Index. It returns a boolean array where True indicates a missing value and False indicates a valid (non-null) value. Example:Pythonimport pandas as pd import numpy as np idx = pd.Index(['a', None, 'c', 'd']) print(idx 2 min read Like