numpy.zeros_like() in Python
Last Updated :
08 Mar, 2024
This numpy method returns an array of given shape and type as given array, with zeros.
Syntax: numpy.zeros_like(array, dtype = None, order = 'K', subok = True)
Parameters :
array : array_like input
subok : [optional, boolean]If true, then newly created array will be sub-class of array;
otherwise, a base-class array
order : C_contiguous or F_contiguous
C-contiguous order in memory(last index varies the fastest)
C order means that operating row-rise on the array will be slightly quicker
FORTRAN-contiguous order in memory (first index varies the fastest).
F order means that column-wise operations will be faster.
dtype : [optional, float(byDefault)] Data type of returned array.
Returns :
ndarray of zeros having given shape, order and datatype.
Code 1 :
Python
# Python Programming illustrating
# numpy.zeros_like method
import numpy as geek
array = geek.arange(10).reshape(5, 2)
print("Original array : \n", array)
b = geek.zeros_like(array, float)
print("\nMatrix b : \n", b)
array = geek.arange(8)
c = geek.zeros_like(array)
print("\nMatrix c : \n", c)
Output:
Original array :
[[0 1]
[2 3]
[4 5]
[6 7]
[8 9]]
Matrix b :
[[ 0. 0.]
[ 0. 0.]
[ 0. 0.]
[ 0. 0.]
[ 0. 0.]]
Matrix c :
[0 0 0 0 0 0 0 0]
Code 2 :
Python
# Python Programming illustrating
# numpy.zeros_like method
import numpy as geek
array = geek.arange(10).reshape(5, 2)
print("Original array : \n", array)
array = geek.arange(4).reshape(2, 2)
c = geek.zeros_like(array, dtype = 'float')
print("\nMatrix : \n", c)
array = geek.arange(8)
c = geek.zeros_like(array, dtype = 'float', order ='C')
print("\nMatrix : \n", c)
Output :
Original array :
[[0 1]
[2 3]
[4 5]
[6 7]
[8 9]]
Matrix :
[[ 0. 0.]
[ 0. 0.]]
Matrix :
[ 0. 0. 0. 0. 0. 0. 0. 0.]
Note :
Also, these codes won’t run on online IDE's. Please run them on your systems to explore the working
Explore
Python Fundamentals
Python Data Structures
Advanced Python
Data Science with Python
Web Development with Python
Python Practice