numpy.nanargmin() in Python
Last Updated :
08 Mar, 2024
The numpy.nanargmin() function returns indices of the min element of the array in a particular axis ignoring NaNs.
The results cannot be trusted if a slice contains only NaNs and Infs.
Syntax:
numpy.nanargmin(array, axis = None)
Parameters :
array : Input array to work on
axis : [int, optional]Along a specified axis like 0 or 1
Return :
Array of indices into the array with same shape as array.shape.
with the dimension along axis removed.
Code 1 :
Python
# Python Program illustrating
# working of nanargmin()
import numpy as geek
# Working on 1D array
array = [geek.nan, 4, 2, 3, 1]
print("INPUT ARRAY 1 : \n", array)
array2 = geek.array([[geek.nan, 4], [1, 3]])
# returning Indices of the min element
# as per the indices ingnoring NaN
print("\nIndices of min in array1 : ",
geek.nanargmin(array))
# Working on 2D array
print("\nINPUT ARRAY 2 : \n", array2)
print("\nIndices of min in array2 : ",
geek.nanargmin(array2))
print("\nIndices at axis 1 of array2 : ",
geek.nanargmin(array2, axis = 1))
Output :
INPUT ARRAY 1 :
[nan, 4, 2, 3, 1]
Indices of min in array1 : 4
INPUT ARRAY 2 :
[[ nan 4.]
[ 1. 3.]]
Indices of min in array2 : 2
Indices at axis 1 of array2 : [1 0]
Code 2 : Comparing working of argmin and nanargmin
Python
# Python Program illustrating
# working of nanargmin()
import numpy as geek
# Working on 2D array
array = ( [[ 8, 13, 5, 0],
[ geek.nan, geek.nan, 5, 3],
[10, 7, 15, 15],
[3, 11, 4, 12]])
print("INPUT ARRAY : \n", array)
# returning Indices of the min element
# as per the indices
'''
[[ 8 13 5 0]
[ 0 2 5 3]
[10 7 15 15]
[ 3 11 4 12]]
^ ^ ^ ^
0 2 4 0 - element
1 1 3 0 - indices
'''
print("\nIndices of min using argmin : ",
geek.argmin(array, axis = 0))
print("\nIndices of min using nanargmin : : ",
geek.nanargmin(array, axis = 0))
Output :
INPUT ARRAY :
[[ 8 13 5 0]
[ 0 2 5 3]
[10 7 15 15]
[ 3 11 4 12]]
Indices of min element : [1 1 3 0]
Note :
These codes won't run on online IDE's. So please, run them on your systems to explore the working.
Explore
Python Fundamentals
Python Data Structures
Advanced Python
Data Science with Python
Web Development with Python
Python Practice