This mathematical function helps user to calculate hypotenuse for the right angled triangle, given its side and perpendicular. Result is equivalent to Equivalent to
sqrt(x1**2 + x2**2), element-wise.
Syntax :
numpy.exp2(arr1, arr2[, out]) = ufunc 'hypot') :
Parameters :
arr1, arr2 : [array_like] Legs(side and perpendicular) of triangle
out : [ndarray, optional] Output array with result.
Return :
An array having hypotenuse of the right triangle.
Code #1 : Working
Python3 1==
# Python3 program explaining
# hypot() function
import numpy as np
leg1 = [12, 3, 4, 6]
print ("leg1 array : ", leg1)
leg2 = [5, 4, 3, 8]
print ("leg2 array : ", leg2)
result = np.hypot(leg1, leg2)
print("\nHypotenuse is as follows :")
print(result)
Output :
leg1 array : [12, 3, 4, 6]
leg2 array : [5, 4, 3, 8]
Hypotenuse is as follows :
[ 13. 5. 5. 10.]
Code #2 : Working with 2D array
Python3 1==
# Python3 program explaining
# hypot() function
import numpy as np
leg1 = np.random.rand(3, 4)
print ("leg1 array : \n", leg1)
leg2 = np.ones((3, 4))
print ("leg2 array : \n", leg2)
result = np.hypot(leg1, leg2)
print("\nHypotenuse is as follows :")
print(result)
Output :
leg1 array :
[[ 0.57520509 0.12043366 0.50011671 0.13800957]
[ 0.0528084 0.17827692 0.44236813 0.87758732]
[ 0.94926413 0.47816742 0.46111934 0.63728903]]
leg2 array :
[[ 1. 1. 1. 1.]
[ 1. 1. 1. 1.]
[ 1. 1. 1. 1.]]
Hypotenuse is as follows :
[[ 1.15362944 1.00722603 1.11808619 1.0094784 ]
[ 1.00139339 1.01576703 1.09347591 1.33047342]
[ 1.37880469 1.10844219 1.10119528 1.18580661]]
Code 3 : Equivalent to sqrt(x1**2 + x2**2), element-wise.
Python3 1==
# Python3 program explaining
# hypot() function
import numpy as np
leg1 = np.random.rand(3, 4)
print ("leg1 array : \n", leg1)
leg2 = np.ones((3, 4))
print ("leg2 array : \n", leg2)
result = np.sqrt((leg1 * leg1) + (leg2 * leg2))
print("\nHypotenuse is as follows :")
print(result)
Output :
leg1 array :
[[ 0.7015073 0.89047987 0.1595603 0.27557254]
[ 0.67249153 0.16430312 0.70137114 0.48763522]
[ 0.68067777 0.52154819 0.04339669 0.2239366 ]]
leg2 array :
[[ 1. 1. 1. 1.]
[ 1. 1. 1. 1.]
[ 1. 1. 1. 1.]]
Hypotenuse is as follows :
[[ 1.15362944 1.00722603 1.11808619 1.0094784 ]
[ 1.00139339 1.01576703 1.09347591 1.33047342]
[ 1.37880469 1.10844219 1.10119528 1.18580661]]
Similar Reads
numpy.exp2() in Python numpy.exp2(array, out = None, where = True, casting = 'same_kind', order = 'K', dtype = None) : This mathematical function helps user to calculate 2**x for all x being the array elements. Parameters : array : [array_like]Input array or object whose elements, we need to test. out : [ndarray, optional
2 min read
numpy.cosh() in Python The numpy.cosh() is a mathematical function that helps user to calculate hyperbolic cosine for all x(being the array elements). Equivalent to 1/2 * (np.exp(x) - np.exp(-x)) and np.cos(1j*x). Syntax : numpy.cosh(x[, out]) = ufunc 'cos') Parameters : array : [array_like] elements are in radians. 2pi R
2 min read
NumPy Array in Python NumPy (Numerical Python) is a powerful library for numerical computations in Python. It is commonly referred to multidimensional container that holds the same data type. It is the core data structure of the NumPy library and is optimized for numerical and scientific computation in Python. Table of C
2 min read
numpy.sinh() in Python The numpy.sinh() is a mathematical function that helps user to calculate hyperbolic sine for all x(being the array elements). Equivalent to 1/2 * (np.exp(x) - np.exp(-x)) or -1j * np.sin(1j*x). Syntax: numpy.sinh(x[, out]) = ufunc 'sin') Parameters : array : [array_like] elements are in radians. 2pi
2 min read
Python NumPy Numpy is a general-purpose array-processing package. It provides a high-performance multidimensional array object, and tools for working with these arrays. It is the fundamental package for scientific computing with Python.Besides its obvious scientific uses, Numpy can also be used as an efficient m
6 min read