numpy.argmin() in Python Last Updated : 08 Mar, 2024 Comments Improve Suggest changes Like Article Like Report The numpy.argmin() method returns indices of the min element of the array in a particular axis. Syntax : numpy.argmin(array, axis = None, out = None) Parameters : array : Input array to work on axis : [int, optional]Along a specified axis like 0 or 1 out : [array optional]Provides a feature to insert output to the out array and it should be of appropriate shape and dtype Return : Array of indices into the array with same shape as array.shape with the dimension along axis removed. Code 1 : Python # Python Program illustrating # working of argmin() import numpy as geek # Working on 1D array array = geek.arange(8) print("INPUT ARRAY : \n", array) # returning Indices of the min element # as per the indices print("\nIndices of min element : ", geek.argmin(array, axis=0)) Output : INPUT ARRAY : [0 1 2 3 4 5 6 7] Indices of min element : 0 Code 2 : Python # Python Program illustrating # working of argmin() import numpy as geek # Working on 2D array array = geek.random.randint(16, size=(4, 4)) print("INPUT ARRAY : \n", array) # returning Indices of the min element # as per the indices ''' [[ 8 13 5 0] [ 0 2 5 3] [10 7 15 15] [ 3 11 4 12]] ^ ^ ^ ^ 0 2 4 0 - element 1 1 3 0 - indices ''' print("\nIndices of min element : ", geek.argmin(array, axis = 0)) Output : INPUT ARRAY : [[ 8 13 5 0] [ 0 2 5 3] [10 7 15 15] [ 3 11 4 12]] Indices of min element : [1 1 3 0] Code 3 : Python # Python Program illustrating # working of argmin() import numpy as geek # Working on 2D array array = geek.arange(10).reshape(2, 5) print("array : \n", array) array[0][0] = 10 array[1][1] = 1 array[0][1] = 1 print("\narray : \n", array) # Returns min element print("\narray : ", geek.argmin(array)) # First occurrence of an min element is given print("\nmin ELEMENT INDICES : ", geek.argmin(array, axis = 0)) Output : array : [[0 1 2 3 4] [5 6 7 8 9]] array : [[10 1 2 3 4] [ 5 1 7 8 9]] array : 1 min ELEMENT INDICES : [1 0 0 0 0] Comment More info M Mohit Gupta Improve Article Tags : Python Python-numpy Python numpy-Sorting Searching Explore Python FundamentalsPython Introduction 3 min read Input and Output in Python 4 min read Python Variables 5 min read Python Operators 5 min read Python Keywords 2 min read Python Data Types 8 min read Conditional Statements in Python 3 min read Loops in Python - For, While and Nested Loops 7 min read Python Functions 5 min read Recursion in Python 6 min read Python Lambda Functions 5 min read Python Data StructuresPython String 5 min read Python Lists 5 min read Python Tuples 4 min read Python Dictionary 3 min read Python Sets 6 min read Python Arrays 7 min read List Comprehension in Python 4 min read Advanced PythonPython OOP Concepts 11 min read Python Exception Handling 5 min read File Handling in Python 4 min read Python Database Tutorial 4 min read Python MongoDB Tutorial 2 min read Python MySQL 9 min read Python Packages 12 min read Python Modules 7 min read Python DSA Libraries 15 min read List of Python GUI Library and Packages 3 min read Data Science with PythonNumPy Tutorial - Python Library 3 min read Pandas Tutorial 6 min read Matplotlib Tutorial 5 min read Python Seaborn Tutorial 15+ min read StatsModel Library- Tutorial 4 min read Learning Model Building in Scikit-learn 8 min read TensorFlow Tutorial 2 min read PyTorch Tutorial 7 min read Web Development with PythonFlask Tutorial 8 min read Django Tutorial | Learn Django Framework 7 min read Django ORM - Inserting, Updating & Deleting Data 4 min read Templating With Jinja2 in Flask 6 min read Django Templates 7 min read Python | Build a REST API using Flask 3 min read How to Create a basic API using Django Rest Framework ? 4 min read Python PracticePython Quiz 3 min read Python Coding Practice 1 min read Python Interview Questions and Answers 15+ min read Like