numpy.apply_over_axes() in Python
Last Updated :
07 Mar, 2024
The numpy.apply_over_axes()applies a function repeatedly over multiple axes in an array.
Syntax :
numpy.apply_over_axes(func, array, axes)
Parameters :
1d_func : the required function to perform over 1D array. It can only be applied in
1D slices of input array and that too along a particular axis.
axis : required axis along which we want input array to be sliced
array : Input array to work on
*args : Additional arguments to 1D_function
**kwargs : Additional arguments to 1D_function
Return :
The output array. Shape of the output array can be different depending on whether func
changes the shape of its output with respect to its input.
Code 1 :
Python
# Python Program illustrating
# apply_over_axis() in NumPy
import numpy as geek
# Using a 3D array
geek_array = geek.arange(16).reshape(2, 2, 4)
print("geek array :\n", geek_array)
# Applying pre-defined sum function over the axis of 3D array
print("\nfunc sum : \n ", geek.apply_over_axes(geek.sum, geek_array, [1, 1, 0]))
# Applying pre-defined min function over the axis of 3D array
print("\nfunc min : \n ", geek.apply_over_axes(geek.min, geek_array, [1, 1, 0]))
Output :
geek array :
[[[ 0 1 2 3]
[ 4 5 6 7]]
[[ 8 9 10 11]
[12 13 14 15]]]
func sum :
[[[24 28 32 36]]]
func min :
[[[0 1 2 3]]]
Code 2 :
Python
# Python Program illustrating
# apply_over_axis() in NumPy
import numpy as geek
# Using a 2D array
geek_array = geek.arange(16).reshape(4, 4)
print("geek array :\n", geek_array)
"""
->[[ 0 1 2 3] min : 0 max : 3 sum = 0 + 1 + 2 + 3
-> [ 4 5 6 7] min : 4 max : 7 sum = 4 + 5 + 6 + 7
-> [ 8 9 10 11] min : 8 max : 11 sum = 8 + 9 + 10 + 11
-> [12 13 14 15]] min : 12 max : 15 sum = 12 + 13 + 14 + 15
"""
# Applying pre-defined min function over the axis of 2D array
print("\nApplying func max : \n ", geek.apply_over_axes(geek.max, geek_array, [1, -1]))
# Applying pre-defined min function over the axis of 2D array
print("\nApplying func min : \n ", geek.apply_over_axes(geek.min, geek_array, [1, -1]))
# Applying pre-defined sum function over the axis of 2D array
print("\nApplying func sum : \n ", geek.apply_over_axes(geek.sum, geek_array, [1, -1]))
Output :
geek array :
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]
[12 13 14 15]]
Applying func max :
[[ 3]
[ 7]
[11]
[15]]
Applying func min :
[[ 0]
[ 4]
[ 8]
[12]]
Applying func sum :
[[ 6]
[22]
[38]
[54]]
Code 3 : Equivalent to Code 2 without using numpy.apply_over_axis()
Python
# Python Program illustrating
# equivalent to apply_over_axis()
import numpy as geek
# Using a 3D array
geek_array = geek.arange(16).reshape(2, 2, 4)
print("geek array :\n", geek_array)
# returning sum of all elements as per the axis
print("func : \n", geek.sum(geek_array, axis=(1, 0, 2), keepdims = True))
Output :
geek array :
[[[ 0 1 2 3]
[ 4 5 6 7]]
[[ 8 9 10 11]
[12 13 14 15]]]
func :
[[[120]]]
Note :
These codes won’t run on online IDE’s. Please run them on your systems to explore the working.
Explore
Python Fundamentals
Python Data Structures
Advanced Python
Data Science with Python
Web Development with Python
Python Practice