Matplotlib.pyplot.contourf() in Python Last Updated : 12 Jul, 2025 Comments Improve Suggest changes Like Article Like Report Matplotlib is a library in Python and it is numerical - mathematical extension for NumPy library. Pyplot is a state-based interface to a Matplotlib module which provides a MATLAB-like interface. matplotlib.pyplot.contourf() Function The contourf() function in pyplot module of matplotlib library is used to plot contours. But contourf draw filled contours, while contourf draws contour lines. Syntax: matplotlib.pyplot.contourf(\*args, data=None, \*\*kwargs) Parameters: This method accept the following parameters that are described below: X, Y: These parameter are the coordinates of the values in Z. Z : This parameter is the height values over which the contour is drawn. levels : This parameter is used to determine the numbers and positions of the contour lines / regions. Returns: This returns the following: c :This returns the QuadContourSet. Below examples illustrate the matplotlib.pyplot.contourf() function in matplotlib.pyplot: Example #1: Python3 1== # Implementation of matplotlib function import numpy as np import matplotlib.pyplot as plt from numpy import ma from matplotlib import ticker, cm N = 1000 x = np.linspace(-6.0, 6.0, N) y = np.linspace(-7.0, 7.0, N) X, Y = np.meshgrid(x, y) Z1 = np.exp(X * Y) z = 50 * Z1 z[:5, :5] = -1 z = ma.masked_where(z <= 0, z) cs = plt.contourf(X, Y, z, locator = ticker.LogLocator(), cmap ="bone") cbar = plt.colorbar(cs) plt.title('matplotlib.pyplot.contourf() Example') plt.show() Output: Example #2: Python3 1== # Implementation of matplotlib function import matplotlib.pyplot as plt import numpy as np # invent some numbers, turning # the x and y arrays into simple # 2d arrays, which make combining # them together easier. x = np.linspace(-3, 15, 50).reshape(1, -1) y = np.linspace(-3, 15, 20).reshape(-1, 1) z = np.cos(x)*2 - np.sin(y)*2 # we no longer need x and y to # be 2 dimensional, so flatten them. x, y = x.flatten(), y.flatten() cs = plt.contourf(x, y, z, hatches =['-', '/', '\\', '//'], cmap ='Greens', extend ='both', alpha = 1) plt.colorbar(cs) plt.title('matplotlib.pyplot.contourf() Example') plt.show() Output: Comment More infoAdvertise with us S shubhamsingh10 Follow Improve Article Tags : Python Python-matplotlib Practice Tags : python Explore Python FundamentalsPython Introduction 3 min read Input and Output in Python 4 min read Python Variables 5 min read Python Operators 5 min read Python Keywords 2 min read Python Data Types 8 min read Conditional Statements in Python 3 min read Loops in Python - For, While and Nested Loops 7 min read Python Functions 5 min read Recursion in Python 6 min read Python Lambda Functions 5 min read Python Data StructuresPython String 5 min read Python Lists 5 min read Python Tuples 4 min read Dictionaries in Python 3 min read Python Sets 6 min read Python Arrays 7 min read List Comprehension in Python 4 min read Advanced PythonPython OOP Concepts 10 min read Python Exception Handling 6 min read File Handling in Python 4 min read Python Database Tutorial 4 min read Python MongoDB Tutorial 2 min read Python MySQL 9 min read Python Packages 12 min read Python Modules 7 min read Python DSA Libraries 15 min read List of Python GUI Library and Packages 11 min read Data Science with PythonNumPy Tutorial - Python Library 3 min read Pandas Tutorial 6 min read Matplotlib Tutorial 5 min read Python Seaborn Tutorial 15+ min read StatsModel Library- Tutorial 4 min read Learning Model Building in Scikit-learn 8 min read TensorFlow Tutorial 2 min read PyTorch Tutorial 7 min read Web Development with PythonFlask Tutorial 8 min read Django Tutorial | Learn Django Framework 10 min read Django ORM - Inserting, Updating & Deleting Data 4 min read Templating With Jinja2 in Flask 6 min read Django Templates 7 min read Python | Build a REST API using Flask 3 min read How to Create a basic API using Django Rest Framework ? 4 min read Python PracticePython Quiz 3 min read Python Coding Practice 1 min read Python Interview Questions and Answers 15+ min read Like