Creating a one-dimensional NumPy array Last Updated : 15 Jul, 2025 Comments Improve Suggest changes Like Article Like Report One-dimensional array contains elements only in one dimension. In other words, the shape of the NumPy array should contain only one value in the tuple. We can create a 1-D array in NumPy using the array() function, which converts a Python list or iterable object. Python import numpy as np # Create a one-dimensional array from a list array_1d = np.array([1, 2, 3, 4, 5]) print(array_1d) Output[1 2 3 4 5] Let's explore various methods to Create one- dimensional Numpy Array.Table of ContentUsing Arrange() Using Linspace() Using Fromiter() Using Zeros()Using Ones() FunctionUsing Random() FunctionUsing Arrange() arrange() returns evenly spaced values within a given interval. Python # importing the module import numpy as np # creating 1-d array x = np.arange(3, 10, 2) print(x) Output[3 5 7 9] Using Linspace() Linspace() creates evenly space numerical elements between two given limits. Python import numpy as np # creating 1-d array x = np.linspace(3, 10, 3) print(x) Output:[ 3. 6.5 10. ]Using Fromiter() Fromiter() is useful for creating non-numeric sequence type array however it can create any type of array. Here we will convert a string into a NumPy array of characters. Python import numpy as np # creating the string str = "geeksforgeeks" # creating 1-d array x = np.fromiter(str, dtype='U2') print(x) Output:['g' 'e' 'e' 'k' 's' 'f' 'o' 'r' 'g' 'e' 'e' 'k' 's']Using Zeros()Zeros() returns the numbers of 0s as passed in the parameter of the method Python import numpy as np arr5 = np.zeros(5) print(arr5) Output:[0.0.0.0.0]Using Ones() Functionones() returns the numbers of 1s as passed in the parameter of the method Python import numpy as np arr6 = np.ones(5) print(arr6) Output[1. 1. 1. 1. 1.] Using Random() FunctionRandom() return the random module provides various methods to create arrays filled with random values. Python import numpy as np a=np.random.rand(2,3) print(a) Output[[0.07752187 0.74982957 0.53760007] [0.73647835 0.62539542 0.27565598]] Comment More info Y ysachin2314 Follow Improve Article Tags : Python Python-numpy Python numpy-arrayCreation python Explore Python FundamentalsPython Introduction 3 min read Input and Output in Python 4 min read Python Variables 5 min read Python Operators 5 min read Python Keywords 2 min read Python Data Types 8 min read Conditional Statements in Python 3 min read Loops in Python - For, While and Nested Loops 7 min read Python Functions 5 min read Recursion in Python 6 min read Python Lambda Functions 5 min read Python Data StructuresPython String 5 min read Python Lists 5 min read Python Tuples 4 min read Python Dictionary 3 min read Python Sets 6 min read Python Arrays 7 min read List Comprehension in Python 4 min read Advanced PythonPython OOP Concepts 11 min read Python Exception Handling 5 min read File Handling in Python 4 min read Python Database Tutorial 4 min read Python MongoDB Tutorial 2 min read Python MySQL 9 min read Python Packages 12 min read Python Modules 7 min read Python DSA Libraries 15 min read List of Python GUI Library and Packages 3 min read Data Science with PythonNumPy Tutorial - Python Library 3 min read Pandas Tutorial 6 min read Matplotlib Tutorial 5 min read Python Seaborn Tutorial 15+ min read StatsModel Library- Tutorial 4 min read Learning Model Building in Scikit-learn 8 min read TensorFlow Tutorial 2 min read PyTorch Tutorial 7 min read Web Development with PythonFlask Tutorial 8 min read Django Tutorial | Learn Django Framework 7 min read Django ORM - Inserting, Updating & Deleting Data 4 min read Templating With Jinja2 in Flask 6 min read Django Templates 7 min read Python | Build a REST API using Flask 3 min read How to Create a basic API using Django Rest Framework ? 4 min read Python PracticePython Quiz 3 min read Python Coding Practice 1 min read Python Interview Questions and Answers 15+ min read Like