Either the covariance between x and y is :
Covariance(x,y) > 0 : this means that they are positively related
Covariance(x,y) < 0 : this means that x and y are negatively related
if Covariance(x,y) = 0 : then x and y are independent of each other.
ny.cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=None)
m : [array_like] A 1D or 2D variables. variables are columns
y : [array_like] It has the same form as that of m.
rowvar : [bool, optional] If rowvar is True (default), then each row represents a variable, with observations in the columns. Otherwise, the relationship is transposed:
bias : Default normalization is False. If bias is True it normalize the data points.
ddof : If not None the default value implied by bias is overridden. Note that ddof=1 will return the unbiased estimate, even if both fweights and aweights are specified.
fweights : fweight is 1-D array of integer frequency weights
aweights : aweight is 1-D array of observation vector weights.
Returns: It returns ndarray covariance matrix
numpy.corrcoef(x, y=None, rowvar=True, bias=<no value>, ddof=<no value>)
x : A 1-D or 2-D array containing multiple variables and observations. Each row of x represents a variable, and each column a single observation of all those variables. Also see rowvar below.
y, optional: An additional set of variables and observations. y has the same shape as x.
rowvar : If rowvar is True (default), then each row represents a variable, with observations in the columns. Otherwise, the relationship is transposed: each column represents a variable, while the rows contain observations.
Returns: ndarray