Open In App

Python - Uniform Discrete Distribution in Statistics

Last Updated : 10 Jan, 2020
Comments
Improve
Suggest changes
Like Article
Like
Report
scipy.stats.randint() is a uniform discrete random variable. It is inherited from the of generic methods as an instance of the rv_discrete class. It completes the methods with details specific for this particular distribution. Parameters :
x : quantiles loc : [optional]location parameter. Default = 0 scale : [optional]scale parameter. Default = 1 moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’). Results : uniform discrete random variable
Code #1 : Creating uniform discrete random variable Python3 1==
# importing library

from scipy.stats import randint 
  
numargs = randint .numargs 
a, b = 0.2, 0.8
rv = randint (a, b) 
  
print ("RV : \n", rv)  
Output :
RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x0000016A4D865848
Code #2 : uniform discrete variates and probability distribution Python3 1==
import numpy as np 
quantile = np.arange (0.01, 1, 0.1) 

# Random Variates 
R = randint .rvs(a, b, size = 10) 
print ("Random Variates : \n", R) 

# PDF 
x = np.linspace(randint.ppf(0.01, a, b),
                randint.ppf(0.99, a, b), 10)
R = randint.ppf(x, 1, 3)
print ("\nProbability Distribution : \n", R) 
Output :
Random Variates : 
 [ 3  0  0 15  0  1  4  2  0  6]

Probability Distribution : 
 [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]

Code #3 : Graphical Representation. Python3 1==
import numpy as np 
import matplotlib.pyplot as plt 
   
distribution = np.linspace(0, np.minimum(rv.dist.b, 2)) 
print("Distribution : \n", distribution) 
   
plot = plt.plot(distribution, rv.ppf(distribution)) 
Output :
Distribution : 
 [0.         0.04081633 0.08163265 0.12244898 0.16326531 0.20408163
 0.24489796 0.28571429 0.32653061 0.36734694 0.40816327 0.44897959
 0.48979592 0.53061224 0.57142857 0.6122449  0.65306122 0.69387755
 0.73469388 0.7755102  0.81632653 0.85714286 0.89795918 0.93877551
 0.97959184 1.02040816 1.06122449 1.10204082 1.14285714 1.18367347
 1.2244898  1.26530612 1.30612245 1.34693878 1.3877551  1.42857143
 1.46938776 1.51020408 1.55102041 1.59183673 1.63265306 1.67346939
 1.71428571 1.75510204 1.79591837 1.83673469 1.87755102 1.91836735
 1.95918367 2.        ]
  
Code #4 : Varying Positional Arguments Python3 1==
import matplotlib.pyplot as plt 
import numpy as np 

x = np.linspace(0, 5, 100) 
   
# Varying positional arguments 
y1 = randint.ppf(x, a, b) 
y2 = randint.pmf(x, a, b) 
plt.plot(x, y1, "*", x, y2, "r--") 
Output :

Practice Tags :

Similar Reads