Open In App

Python - tensorflow.IndexedSlices.graph Attribute

Last Updated : 20 Jul, 2020
Summarize
Comments
Improve
Suggest changes
Share
Like Article
Like
Report

TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning  neural networks.

graph is used to find the  Graph that contains the values, indices, and shape tensors. 

Syntax: tensorflow.IndexedSlices.graph

Return: It returns a Graph instance.

Example 1:

Python3
# Importing the library
import tensorflow as tf

# Initializing the input
data = tf.constant([[1, 2, 3], [4, 5, 6]], dtype = tf.float32)

# Printing the input
print('data: ', data)

# Calculating result
res = tf.IndexedSlices(data, [0])

# Finding Graph
@tf.function
def gfg(): 
  tf.compat.v1.disable_eager_execution()

  graph = res.graph

  # Printing the result
  print('graph: ', graph)


gfg()

Output:


data:  Tensor("Const_1:0", shape=(2, 3), dtype=float32)
graph:  <tensorflow.python.framework.ops.Graph object at 0x7f2eeda9e630>

<tf.Operation 'PartitionedCall_1' type=PartitionedCall>

Example 2: 

Python3
# Importing the library
import tensorflow as tf

# Initializing the input
data = tf.constant([1, 2, 3])

# Printing the input
print('data: ', data)

# Calculating result
res = tf.IndexedSlices(data, [0])

# Finding Graph 
graph = res.graph

# Printing the result
print('graph: ', graph)

Output:


data:  Tensor("Const_6:0", shape=(3, ), dtype=int32)
graph:  <tensorflow.python.framework.ops.Graph object at 0x7f2eeda9e630>


Article Tags :
Practice Tags :

Similar Reads