Python | PyTorch tanh() method Last Updated : 12 Dec, 2021 Comments Improve Suggest changes Like Article Like Report PyTorch is an open-source machine learning library developed by Facebook. It is used for deep neural network and natural language processing purposes.One of the many activation functions is the hyperbolic tangent function (also known as tanh) which is defined as tanh(x) = (e^x - e^{-x}) / (e^x + e^{-x}) .The hyperbolic tangent function outputs in the range (-1, 1), thus mapping strongly negative inputs to negative values. Unlike the sigmoid function, only near-zero values are mapped to near-zero outputs, and this solves the "vanishing gradients" problem to some extent. The hyperbolic tangent function is differentiable at every point and its derivative comes out to be 1 - tanh^2(x) . Since the expression involves the tanh function, its value can be reused to make the backward propagation faster.Despite the lower chances of the network getting "stuck" when compared with the sigmoid function, the hyperbolic tangent function still suffers from "vanishing gradients". Rectified Linear Unit (ReLU) can be used to overcome this problem.The function torch.tanh() provides support for the hyperbolic tangent function in PyTorch. It expects the input in radian form and the output is in the range [-∞, ∞]. The input type is tensor and if the input contains more than one element, element-wise hyperbolic tangent is computed. Syntax: torch.tanh(x, out=None)Parameters: x: Input tensor name (optional): Output tensorReturn type: A tensor with the same type as that of x. Code #1: Python3 # Importing the PyTorch library import torch # A constant tensor of size 6 a = torch.FloatTensor([1.0, -0.5, 3.4, -2.1, 0.0, -6.5]) print(a) # Applying the tanh function and # storing the result in 'b' b = torch.tanh(a) print(b) Output: 1.0000 -0.5000 3.4000 -2.1000 0.0000 -6.5000 [torch.FloatTensor of size 6] 0.7616 -0.4621 0.9978 -0.9705 0.0000 -1.0000 [torch.FloatTensor of size 6] Code #2: Visualization Python3 # Importing the PyTorch library import torch # Importing the NumPy library import numpy as np # Importing the matplotlib.pyplot function import matplotlib.pyplot as plt # A vector of size 15 with values from -5 to 5 a = np.linspace(-5, 5, 15) # Applying the hyperbolic tangent function and # storing the result in 'b' b = torch.tanh(torch.FloatTensor(a)) print(b) # Plotting plt.plot(a, b.numpy(), color = 'red', marker = "o") plt.title("torch.tanh") plt.xlabel("X") plt.ylabel("Y") plt.show() Output: -0.9999 -0.9996 -0.9984 -0.9934 -0.9728 -0.8914 -0.6134 0.0000 0.6134 0.8914 0.9728 0.9934 0.9984 0.9996 0.9999 [torch.FloatTensor of size 15] Create Quiz Comment V vaibhav29498 Follow 0 Improve V vaibhav29498 Follow 0 Improve Article Tags : Machine Learning Python-PyTorch python Explore Machine Learning BasicsIntroduction to Machine Learning8 min readTypes of Machine Learning7 min readWhat is Machine Learning Pipeline?6 min readApplications of Machine Learning3 min readPython for Machine LearningMachine Learning with Python Tutorial5 min readNumPy Tutorial - Python Library3 min readPandas Tutorial4 min readData Preprocessing in Python4 min readEDA - Exploratory Data Analysis in Python6 min readFeature EngineeringWhat is Feature Engineering?5 min readIntroduction to Dimensionality Reduction4 min readFeature Selection Techniques in Machine Learning4 min readSupervised LearningSupervised Machine Learning7 min readLinear Regression in Machine learning14 min readLogistic Regression in Machine Learning10 min readDecision Tree in Machine Learning8 min readRandom Forest Algorithm in Machine Learning5 min readK-Nearest Neighbor(KNN) Algorithm8 min readSupport Vector Machine (SVM) Algorithm9 min readNaive Bayes Classifiers6 min readUnsupervised LearningWhat is Unsupervised Learning5 min readK means Clustering â Introduction6 min readHierarchical Clustering in Machine Learning6 min readDBSCAN Clustering in ML - Density based clustering6 min readApriori Algorithm6 min readFrequent Pattern Growth Algorithm5 min readECLAT Algorithm - ML5 min readPrincipal Component Analysis (PCA)7 min readModel Evaluation and TuningEvaluation Metrics in Machine Learning9 min readRegularization in Machine Learning5 min readCross Validation in Machine Learning5 min readHyperparameter Tuning5 min readUnderfitting and Overfitting in ML3 min readBias and Variance in Machine Learning6 min readAdvanced TechniquesReinforcement Learning9 min readSemi-Supervised Learning in ML5 min readSelf-Supervised Learning (SSL)6 min readEnsemble Learning8 min readMachine Learning PracticeMachine Learning Interview Questions and Answers15+ min read100+ Machine Learning Projects with Source Code5 min read Like