Open In App

Python | Pandas Series.as_blocks()

Last Updated : 27 Feb, 2019
Comments
Improve
Suggest changes
Like Article
Like
Report
Pandas series is a One-dimensional ndarray with axis labels. The labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Pandas Series.as_blocks() function is used to convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype.
Syntax: Series.as_blocks(copy=True) Parameter : copy : boolean, default True Returns : values : a dict of dtype -> Constructor Types
Example #1: Use Series.as_blocks() function to return the given series object as a dictionary. Python3
# importing pandas as pd
import pandas as pd

# Creating the Series
sr = pd.Series(['New York', 'Chicago', 'Toronto', 'Lisbon', 'Rio'])

# Create the Index
index_ = ['City 1', 'City 2', 'City 3', 'City 4', 'City 5'] 

# set the index
sr.index = index_

# Print the series
print(sr)
Output :
City 1    New York
City 2     Chicago
City 3     Toronto
City 4      Lisbon
City 5         Rio
dtype: object
Now we will use Series.as_blocks() function to return the given series object as a dictionary. Python3 1==
# return a dictionary
result = sr.as_blocks()

# Print the result
print(result)
Output :
{'object': City 1    New York
City 2     Chicago
City 3     Toronto
City 4      Lisbon
City 5         Rio
dtype: object}
As we can see in the output, the Series.as_blocks() function has successfully returned the given series object as a dictionary.   Example #2 : Use Series.as_blocks() function to return the given series object as a dictionary. Python3
# importing pandas as pd
import pandas as pd

# Creating the Series
sr = pd.Series([11, 21, 8, 18, 65, 18, 32, 10, 5, 32, None])

# Create the Index
# apply yearly frequency
index_ = pd.date_range('2010-10-09 08:45', periods = 11, freq ='Y')

# set the index
sr.index = index_

# Print the series
print(sr)
Output :
2010-12-31 08:45:00    11.0
2011-12-31 08:45:00    21.0
2012-12-31 08:45:00     8.0
2013-12-31 08:45:00    18.0
2014-12-31 08:45:00    65.0
2015-12-31 08:45:00    18.0
2016-12-31 08:45:00    32.0
2017-12-31 08:45:00    10.0
2018-12-31 08:45:00     5.0
2019-12-31 08:45:00    32.0
2020-12-31 08:45:00     NaN
Freq: A-DEC, dtype: float64
Now we will use Series.as_blocks() function to return the given series object as a dictionary. Python3 1==
# return a dictionary
result = sr.as_blocks()

# Print the result
print(result)
Output :
{'float64': 2010-12-31 08:45:00    11.0
2011-12-31 08:45:00    21.0
2012-12-31 08:45:00     8.0
2013-12-31 08:45:00    18.0
2014-12-31 08:45:00    65.0
2015-12-31 08:45:00    18.0
2016-12-31 08:45:00    32.0
2017-12-31 08:45:00    10.0
2018-12-31 08:45:00     5.0
2019-12-31 08:45:00    32.0
2020-12-31 08:45:00     NaN
Freq: A-DEC, dtype: float64}
As we can see in the output, the Series.as_blocks() function has successfully returned the given series object as a dictionary.

Next Article

Similar Reads