Python | Pandas Index.nunique()
Last Updated :
18 Dec, 2018
Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages.
Pandas is one of those packages and makes importing and analyzing data much easier.
Pandas
Index.nunique() function return number of unique elements in the object. It returns a scalar value which is the count of all the unique values in the Index. By default the
NaN values are not included in the count. If dropna parameter is set to be
False then it includes
NaN value in the count.
Syntax: Index.nunique(dropna=True)
Parameters :
dropna : Don’t include NaN in the count.
Returns : nunique : int
Example #1: Use
Index.nunique()() function to find the count of unique values in the Index. Do not include
NaN values in the count.
Python3
# importing pandas as pd
import pandas as pd
# Creating the index
idx = pd.Index(['Beagle', 'Pug', 'Labrador', 'Pug',
'Mastiff', None, 'Beagle'])
# Print the Index
idx
Output :

Let's find the count of unique values in the Index.
Python3
# to find the count of unique values.
idx.nunique(dropna = True)
Output :

As we can see in the output, the function has returned 4 indicating that there are only 4 unique values in the Index.
Example #2: Use
Index.nunique() function find out all the unique values in the Index. Also include the missing values i.e.
NaN values in the count.
Python3
# importing pandas as pd
import pandas as pd
# Creating the index
idx = pd.Index(['Beagle', 'Pug', 'Labrador', 'Pug',
'Mastiff', None, 'Beagle'])
# Print the Index
idx
Output :

Let's find the count of unique values in the Index.
Python3
# to find the count of unique values.
idx.nunique(dropna = False)
Output :

As we can see in the output, the function has returned 5 indicating that there are only 5 unique values in the Index. We have also included the missing values in the count.
Explore
Python Fundamentals
Python Data Structures
Advanced Python
Data Science with Python
Web Development with Python
Python Practice