Python | Pandas Index.notnull()
Last Updated :
18 Dec, 2018
Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages.
Pandas is one of those packages and makes importing and analyzing data much easier.
Pandas
Index.notnull()
function detect existing (non-missing) values. This function return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True). NA values, such as None or numpy.NaN, get mapped to False values.
Syntax: Index.notnull()
Returns : Boolean array to indicate which entries are not NA.
Example #1: Use
Index.notnull()()
function to detect missing values in the given Index.
Python3
# importing pandas as pd
import pandas as pd
# Creating the index
idx = pd.Index(['Jan', '', 'Mar', None, 'May', 'Jun', 'Jul',
'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])
# Print the Index
idx
Output :

Let's find out all the non-missing values in the Index
Python3
# to find the non-missing values.
idx.notnull()
Output :

As we can see in the output, all the non-missing values has been mapped to
True
and all the missing values has been mapped to
False
. Notice the empty string has been mapped to
True
as an empty string is not considered to be a missing value.
Example #2: Use
Index.notnull()
function find out all the non-missing values in the Index.
Python3
# importing pandas as pd
import pandas as pd
# Creating the index
idx = pd.Index([22, 14, 8, 56, None, 21, None, 23])
# Print the Index
idx
Output :

Let's find out all the non-missing values in the Index
Python3
# to find the non-missing values.
idx.notnull()
Output :

As we can see in the output, all the non-missing values have been mapped to
True
and all the missing values have been mapped to
False
.