Python | Pandas Index.inferred_type
Last Updated :
27 Feb, 2019
Pandas Index is an immutable ndarray implementing an ordered, sliceable set. It is the basic object which stores the axis labels for all pandas objects.
Pandas
Index.inferred_type
attribute return a string of the data type inferred from the values of the given Index object.
Syntax: Index.inferred_type
Parameter : None
Returns : inferred_type
Example #1: Use
Index.inferred_type
attribute to find out the inferred data type of the value in the given Index object.
Python3
# importing pandas as pd
import pandas as pd
# Creating the index
idx = pd.Index(['Jan', 'Feb', 'Mar', 'Apr', 'May'])
# Print the index
print(idx)
Output :
Index(['Jan', 'Feb', 'Mar', 'Apr', 'May'], dtype='object')
Now we will use
Index.inferred_type
attribute to find out the inferred dtype of the underlying data of the given Index object.
Python3 1==
# return the inferred dtype
result = idx.inferred_type
# Print the result
print(result)
Output :
mixed
As we can see in the output, the
Index.inferred_type
attribute has returned
String
as the inferred data type of the given Index object.
Example #2 : Use
Index.inferred_type
attribute to find out the inferred data type of the value in the given Index object.
Python3
# importing pandas as pd
import pandas as pd
# Creating the index
idx = pd.Index(['2012-12-12', None, '2002-1-10', None])
# Print the index
print(idx)
Output :
Index(['2012-12-12', None, '2002-1-10', None], dtype='object')
Now we will use
Index.inferred_type
attribute to find out the inferred dtype of the underlying data of the given Index object.
Python3 1==
# return the inferred dtype
result = idx.inferred_type
# Print the result
print(result)
Output :
mixed
As we can see in the output, the
Index.inferred_type
attribute has returned
mixed
as the inferred data type of the given Index object.