Open In App

Python | Pandas dataframe.reindex()

Last Updated : 22 Nov, 2018
Comments
Improve
Suggest changes
Like Article
Like
Report
Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas dataframe.reindex() function conform DataFrame to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False
Syntax: DataFrame.reindex(labels=None, index=None, columns=None, axis=None, method=None, copy=True, level=None, fill_value=nan, limit=None, tolerance=None) Parameters : labels : New labels/index to conform the axis specified by ‘axis’ to. index, columns : New labels / index to conform to. Preferably an Index object to avoid duplicating data axis : Axis to target. Can be either the axis name (‘index’, ‘columns’) or number (0, 1). method : {None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}, optional copy : Return a new object, even if the passed indexes are the same level : Broadcast across a level, matching Index values on the passed MultiIndex level fill_value : Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing. limit : Maximum number of consecutive elements to forward or backward fill tolerance : Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation abs(index[indexer] - target) <= tolerance. Returns : reindexed : DataFrame
Example #1: Use reindex() function to reindex the dataframe. By default values in the new index that do not have corresponding records in the dataframe are assigned NaN. Note : We can fill in the missing values by passing a value to the keyword fill_value. Python3
# importing pandas as pd
import pandas as pd

# Creating the dataframe 
df = pd.DataFrame({"A":[1, 5, 3, 4, 2],
                   "B":[3, 2, 4, 3, 4],
                   "C":[2, 2, 7, 3, 4],
                   "D":[4, 3, 6, 12, 7]},
                   index =["first", "second", "third", "fourth", "fifth"])

# Print the dataframe
df
Let's use the dataframe.reindex() function to reindex the dataframe Python3 1==
# reindexing with new index values
df.reindex(["first", "dues", "trois", "fourth", "fifth"])
Output : Notice the output, new indexes are populated with NaN values, we can fill in the missing values using the parameter, fill_value Python3 1==
# filling the missing values by 100
df.reindex(["first", "dues", "trois", "fourth", "fifth"], fill_value = 100)
Output :   Example #2: Use reindex() function to reindex the column axis Python3
# importing pandas as pd
import pandas as pd

# Creating the first dataframe 
df1 = pd.DataFrame({"A":[1, 5, 3, 4, 2],
                    "B":[3, 2, 4, 3, 4],
                    "C":[2, 2, 7, 3, 4],
                    "D":[4, 3, 6, 12, 7]})

# reindexing the column axis with
# old and new index values
df.reindex(columns =["A", "B", "D", "E"])
Output : Notice, we have NaN values in the new columns after reindexing, we can take care of the missing values at the time of reindexing. By passing an argument fill_value to the function. Python3 1==
# reindex the columns
# fill the missing values by 25
df.reindex(columns =["A", "B", "D", "E"], fill_value = 25)
Output :

Next Article

Similar Reads