Open In App

Python | Pandas DataFrame.ftypes

Last Updated : 20 Feb, 2019
Comments
Improve
Suggest changes
Like Article
Like
Report
Pandas DataFrame is a two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. It can be thought of as a dict-like container for Series objects. This is the primary data structure of the Pandas. Pandas DataFrame.ftypes attribute return the ftypes (indication of sparse/dense and dtype) in DataFrame. It returns a Series with the data type of each column.
Syntax: DataFrame.ftypes Parameter : None Returns : series
Example #1: Use DataFrame.ftypes attribute to check if the columns are sparse or dense in the given Dataframe. Python3
# importing pandas as pd
import pandas as pd

# Creating the DataFrame
df = pd.DataFrame({'Weight':[45, 88, 56, 15, 71],
                   'Name':['Sam', 'Andrea', 'Alex', 'Robin', 'Kia'],
                   'Age':[14, 25, 55, 8, 21]})

# Create the index
index_ = ['Row_1', 'Row_2', 'Row_3', 'Row_4', 'Row_5']

# Set the index
df.index = index_

# Print the DataFrame
print(df)
Output : Now we will use DataFrame.ftypes attribute to check the ftype of the columns in the given dataframe. Python3 1==
# check if the column are 
# dense or sparse
result = df.ftypes

# Print the result
print(result)
Output : As we can see in the output, the DataFrame.ftypes attribute has successfully returned a series containing the ftypes of each column in the given dataframe.   Example #2: Use DataFrame.ftypes attribute to check if the columns are sparse or dense in the given Dataframe. Python3
# importing pandas as pd
import pandas as pd

# Create an array
arr = [100, 35, 125, 85, 35]

# Creating a sparse DataFrame
df = pd.SparseDataFrame(arr)

# Print the DataFrame
print(df)
Output : Now we will use DataFrame.ftypes attribute to check the ftype of the columns in the given dataframe. Python3 1==
# check if the column are 
# dense or sparse
result = df.ftypes

# Print the result
print(result)
Output : As we can see in the output, the DataFrame.ftypes attribute has successfully returned the ftype of the given dataframe.

Next Article

Similar Reads