Python | Numpy np.multivariate_normal() method Last Updated : 13 Oct, 2019 Comments Improve Suggest changes Like Article Like Report With the help of np.multivariate_normal() method, we can get the array of multivariate normal values by using np.multivariate_normal() method. Syntax : np.multivariate_normal(mean, matrix, size) Return : Return the array of multivariate normal values. Example #1 : In this example we can see that by using np.multivariate_normal() method, we are able to get the array of multivariate normal values by using this method. Python3 1=1 # import numpy import numpy as np mean = [1, 2] matrix = [[5, 0], [0, 5]] # using np.multinomial() method gfg = np.random.multivariate_normal(mean, matrix, 10) print(gfg) Output : [[ 6.24847794 6.57894103] [ 1.24114594 3.22013831] [ 3.0660329 2.1442572 ] [ 0.3239289 2.79949784] [-1.42964186 1.11846394] [-0.08521476 0.74518872] [ 1.42307847 3.27995017] [ 3.08412374 0.45869097] [ 2.2158498 2.97014443] [ 1.77583875 0.57446964]] Example #2 : Python3 1=1 # import numpy import numpy as np mean = [0, 0, 0] matrix = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] # using np.multinomial() method gfg = np.random.multivariate_normal(mean, matrix, 5) print(gfg) Output : [[-2.21792571 -1.04526811 -0.4586839 ] [ 0.15760965 0.83934119 -0.52943583] [-0.9978205 0.79594411 -0.00937 ] [-0.16882821 0.1727549 0.14002367] [-1.34406079 1.03498375 0.17620708]] Comment More infoAdvertise with us Next Article Python | Numpy np.multivariate_normal() method J Jitender_1998 Follow Improve Article Tags : Technical Scripter Python Python-numpy Python numpy-arrayManipulation Practice Tags : python Similar Reads Python | Numpy np.multinomial() method With the help of np.multinomial() method, we can get the array of multinomial distribution by using np.multinomial() method. Syntax : np.multinomial(n, nval, size) Return : Return the array of multinomial distribution. Example #1 : In this example we can see that by using np.multinomial() method, we 1 min read How to Perform Multivariate Normality Tests in Python In this article, we will be looking at the various approaches to perform Multivariate Normality Tests in Python. Multivariate Normality test is a test of normality, it determines whether the given group of variables comes from the normal distribution or not. Multivariate Normality Test determines wh 3 min read Python | Numpy numpy.ndarray.__imul__() With the help of numpy.ndarray.__imul__() method, we can multiply a particular value that is provided as a parameter in the ndarray.__imul__() method. Value will be multiplied to every element in a numpy array. Syntax: ndarray.__imul__($self, value, /)Return: self*=value Example #1 : In this example 1 min read Python | Numpy ndarray.__imod__() With the help of Numpy ndarray.__imod__(), every element in an array is operated on binary operator i.e mod(%). Remember we can use any type of values in an array and value for mod is applied as the parameter in ndarray.__imod__(). Syntax: ndarray.__imod__($self, value, /) Return: self%=value Exampl 1 min read Python | Numpy np.lognormal() method With the help of np.lognormal() method, we can get the log normal distribution values using np.lognormal() method. Syntax : np.lognormal(mean, sigma, size) Return : Return the array of log normal distribution. Example #1 : In this example we can see that by using np.lognormal() method, we are able t 1 min read numpy.multiply() in Python The numpy.multiply() is a numpy function in Python which is used to find element-wise multiplication of two arrays or scalar (single value). It returns the product of two input array element by element.Syntax:numpy.multiply(arr1, arr2, out=None, where=True, casting='same_kind', order='K', dtype=None 3 min read numpy.matlib.empty() function | Python numpy.matlib.empty() function return a new matrix of given shape and type, without initializing entries. Syntax : numpy.matlib.empty(shape, dtype = None, order = 'C') Parameters : shape : [int or tuple of int] Shape of the empty matrix. dtype : [data-type, optional] Desired output data-type. order : 1 min read NumPy Array in Python NumPy (Numerical Python) is a powerful library for numerical computations in Python. It is commonly referred to multidimensional container that holds the same data type. It is the core data structure of the NumPy library and is optimized for numerical and scientific computation in Python. Table of C 2 min read Python | numpy.cov() function Covariance provides the measure of strength of correlation between two variable or more set of variables. The covariance matrix element Cij is the covariance of xi and xj. The element Cii is the variance of xi. If COV(xi, xj) = 0 then variables are uncorrelatedIf COV(xi, xj) > 0 then variables po 2 min read Numpy ndarray.dot() function | Python The numpy.ndarray.dot() function computes the dot product of two arrays. It is widely used in linear algebra, machine learning and deep learning for operations like matrix multiplication and vector projections.Example:Pythonimport numpy as np a = np.array([1, 2, 3]) b = np.array([4, 5, 6]) result = 2 min read Like