Open In App

numpy.lookfor() method-Python

Last Updated : 18 Aug, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

numpy.lookfor() function searches through NumPy's documentation for a given keyword or phrase and returns a list of matching functions, classes or terms along with short descriptions.

Example:

Python
import numpy as np
np.lookfor('inverse matrix')

Output:

Search results for 'inverse matrix'
---------------------------------
numpy.linalg.inv
Compute the (multiplicative) inverse of a matrix.
numpy.matrix.I
Return the (multiplicative) inverse of self.

Explanation: Searching "inverse matrix" in NumPy shows numpy.linalg.inv and numpy.matrix.I as options for computing matrix inverses.

Syntax

numpy.lookfor(keyword, module=None, import_modules=True, regenerate=False)

Parameters:

  • keyword (str) : The word or phrase to search for.
  • module (module, optional) : Restrict search to a given module (default: None, searches all available).
  • import_modules (bool, optional) : Whether to import submodules before searching. Default is True.
  • regenerate (bool, optional) : If True, regenerates the cache of documentation entries.

Returns: A list of strings with the names of functions/classes/terms that match the search, along with short documentation snippets.

Why Use numpy.lookfor()?

  • Helps discover functions without knowing exact names.
  • Useful for quick lookups inside the interactive Python shell or Jupyter notebooks.
  • Saves time while exploring NumPy’s vast functionality.
  • Great for learning and debugging when searching for related utilities.

Examples

Example 1: Searching for "isin"

Python
import numpy as np
print(np.lookfor("isin"))

Output

Search results for 'isin'
----------------------------------
numpy.isinf
Test element-wise for positive or negative infinity.
numpy.compat.is_pathlib_path
Check whether obj is a pathlib.Path object.
numpy.isin
Calculates `element in test_elements`, broadcasting over `element` only.

Explanation: Searching "isin" shows related functions, with numpy.isin being the most relevant for checking array element membership.

Example 2: Searching for "isdigit"

Python
import numpy as np
print(np.lookfor("isdigit"))

Output

Search results for 'isdigit'
----------------------------------
numpy.bytes0.isdigit
B.isdigit() -> bool
numpy.str0.isdigit
S.isdigit() -> bool
numpy.char.isdigit
Returns True for each element if all characters in the string are digits.
numpy.chararray.isdigit
Returns True for each element if all characters in the string are digits.

Explanation: Searching "isdigit" highlights functions like numpy.char.isdigit and numpy.chararray.isdigit, which check if string array elements are digits.


Explore