Print the last k nodes of the linked list in reverse order | Iterative Approaches
Last Updated :
11 Jul, 2025
Given a linked list containing N nodes and a positive integer K where K should be less than or equal to N. The task is to print the last K nodes of the list in reverse order.
Examples:
Input : list: 1->2->3->4->5, K = 2
Output : 5 4
Input : list: 3->10->6->9->12->2->8, K = 4
Output : 8 2 12 9
The solution discussed in previous post uses recursive approach. The following article discusses three iterative approaches to solve the above problem.
Approach 1: The idea is to use stack data structure. Push all the linked list nodes data value to stack and pop first K elements and print them.
Below is the implementation of above approach:
C++
// C++ implementation to print the last k nodes
// of linked list in reverse order
#include <bits/stdc++.h>
using namespace std;
// Structure of a node
struct Node {
int data;
Node* next;
};
// Function to get a new node
Node* getNode(int data)
{
// allocate space
Node* newNode = new Node;
// put in data
newNode->data = data;
newNode->next = NULL;
return newNode;
}
// Function to print the last k nodes
// of linked list in reverse order
void printLastKRev(Node* head, int k)
{
// if list is empty
if (!head)
return;
// Stack to store data value of nodes.
stack<int> st;
// Push data value of nodes to stack
while (head) {
st.push(head->data);
head = head->next;
}
int cnt = 0;
// Pop first k elements of stack and
// print them.
while (cnt < k) {
cout << st.top() << " ";
st.pop();
cnt++;
}
}
// Driver code
int main()
{
// Create list: 1->2->3->4->5
Node* head = getNode(1);
head->next = getNode(2);
head->next->next = getNode(3);
head->next->next->next = getNode(4);
head->next->next->next->next = getNode(5);
int k = 4;
// print the last k nodes
printLastKRev(head, k);
return 0;
}
Java
// Java implementation to print the last k nodes
// of linked list in reverse order
import java.util.*;
class GFG
{
// Structure of a node
static class Node
{
int data;
Node next;
};
// Function to get a new node
static Node getNode(int data)
{
// allocate space
Node newNode = new Node();
// put in data
newNode.data = data;
newNode.next = null;
return newNode;
}
// Function to print the last k nodes
// of linked list in reverse order
static void printLastKRev(Node head, int k)
{
// if list is empty
if (head == null)
return;
// Stack to store data value of nodes.
Stack<Integer> st = new Stack<Integer>();
// Push data value of nodes to stack
while (head != null)
{
st.push(head.data);
head = head.next;
}
int cnt = 0;
// Pop first k elements of stack and
// print them.
while (cnt < k)
{
System.out.print(st.peek() + " ");
st.pop();
cnt++;
}
}
// Driver code
public static void main(String[] args)
{
// Create list: 1->2->3->4->5
Node head = getNode(1);
head.next = getNode(2);
head.next.next = getNode(3);
head.next.next.next = getNode(4);
head.next.next.next.next = getNode(5);
int k = 4;
// print the last k nodes
printLastKRev(head, k);
}
}
// This code is contributed by PrinciRaj1992
Python3
# Python3 implementation to print the last k nodes
# of linked list in reverse order
import sys
import math
# Structure of a node
class Node:
def __init__(self,data):
self.data = data
self.next = None
# Function to get a new node
def getNode(data):
# allocate space and return new node
return Node(data)
# Function to print the last k nodes
# of linked list in reverse order
def printLastKRev(head,k):
# if list is empty
if not head:
return
# Stack to store data value of nodes.
stack = []
# Push data value of nodes to stack
while(head):
stack.append(head.data)
head = head.next
cnt = 0
# Pop first k elements of stack and
# print them.
while(cnt < k):
print("{} ".format(stack[-1]),end="")
stack.pop()
cnt += 1
# Driver code
if __name__=='__main__':
# Create list: 1->2->3->4->5
head = getNode(1)
head.next = getNode(2)
head.next.next = getNode(3)
head.next.next.next = getNode(4)
head.next.next.next.next = getNode(5)
k = 4
# print the last k nodes
printLastKRev(head,k)
# This Code is Contributed by Vikash Kumar 37
C#
// C# implementation to print the last k nodes
// of linked list in reverse order
using System;
using System.Collections.Generic;
class GFG
{
// Structure of a node
public class Node
{
public int data;
public Node next;
};
// Function to get a new node
static Node getNode(int data)
{
// allocate space
Node newNode = new Node();
// put in data
newNode.data = data;
newNode.next = null;
return newNode;
}
// Function to print the last k nodes
// of linked list in reverse order
static void printLastKRev(Node head, int k)
{
// if list is empty
if (head == null)
return;
// Stack to store data value of nodes.
Stack<int> st = new Stack<int>();
// Push data value of nodes to stack
while (head != null)
{
st.Push(head.data);
head = head.next;
}
int cnt = 0;
// Pop first k elements of stack and
// print them.
while (cnt < k)
{
Console.Write(st.Peek() + " ");
st.Pop();
cnt++;
}
}
// Driver code
public static void Main(String[] args)
{
// Create list: 1->2->3->4->5
Node head = getNode(1);
head.next = getNode(2);
head.next.next = getNode(3);
head.next.next.next = getNode(4);
head.next.next.next.next = getNode(5);
int k = 4;
// print the last k nodes
printLastKRev(head, k);
}
}
// This code contributed by Rajput-Ji
JavaScript
<script>
// JavaScript implementation to print the last k nodes
// of linked list in reverse order
// Structure of a node
class Node {
constructor(val) {
this.data = val;
this.next = null;
}
}
// Function to get a new node
function getNode(data) {
// allocate space
var newNode = new Node();
// put in data
newNode.data = data;
newNode.next = null;
return newNode;
}
// Function to print the last k nodes
// of linked list in reverse order
function printLastKRev(head , k) {
// if list is empty
if (head == null)
return;
// Stack to store data value of nodes.
var st = [];
// Push data value of nodes to stack
while (head != null) {
st.push(head.data);
head = head.next;
}
var cnt = 0;
// Pop first k elements of stack and
// print them.
while (cnt < k) {
document.write(st.pop() + " ");
cnt++;
}
}
// Driver code
// Create list: 1->2->3->4->5
var head = getNode(1);
head.next = getNode(2);
head.next.next = getNode(3);
head.next.next.next = getNode(4);
head.next.next.next.next = getNode(5);
var k = 4;
// print the last k nodes
printLastKRev(head, k);
// This code contributed by aashish1995
</script>
Time Complexity: O(N)
Auxiliary Space: O(N)
The auxiliary space of the above approach can be reduced to O(k). The idea is to use two pointers. Place first pointer to beginning of the list and move second pointer to k-th node form beginning. Then find k-th node from end using approach discussed in this article: Find kth node from end of linked list. After finding kth node from end push all the remaining nodes in the stack. Pop all elements one by one from stack and print them.
Below is the implementation of the above efficient approach:
C++
// C++ implementation to print the last k nodes
// of linked list in reverse order
#include <bits/stdc++.h>
using namespace std;
// Structure of a node
struct Node {
int data;
Node* next;
};
// Function to get a new node
Node* getNode(int data)
{
// allocate space
Node* newNode = new Node;
// put in data
newNode->data = data;
newNode->next = NULL;
return newNode;
}
// Function to print the last k nodes
// of linked list in reverse order
void printLastKRev(Node* head, int k)
{
// if list is empty
if (!head)
return;
// Stack to store data value of nodes.
stack<int> st;
// Declare two pointers.
Node *first = head, *sec = head;
int cnt = 0;
// Move second pointer to kth node.
while (cnt < k) {
sec = sec->next;
cnt++;
}
// Move first pointer to kth node from end
while (sec) {
first = first->next;
sec = sec->next;
}
// Push last k nodes in stack
while (first) {
st.push(first->data);
first = first->next;
}
// Last k nodes are reversed when pushed
// in stack. Pop all k elements of stack
// and print them.
while (!st.empty()) {
cout << st.top() << " ";
st.pop();
}
}
// Driver code
int main()
{
// Create list: 1->2->3->4->5
Node* head = getNode(1);
head->next = getNode(2);
head->next->next = getNode(3);
head->next->next->next = getNode(4);
head->next->next->next->next = getNode(5);
int k = 4;
// print the last k nodes
printLastKRev(head, k);
return 0;
}
Java
// Java implementation to print
// the last k nodes of linked list
// in reverse order
import java.util.*;
class GFG
{
// Structure of a node
static class Node
{
int data;
Node next;
};
// Function to get a new node
static Node getNode(int data)
{
// allocate space
Node newNode = new Node();
// put in data
newNode.data = data;
newNode.next = null;
return newNode;
}
// Function to print the last k nodes
// of linked list in reverse order
static void printLastKRev(Node head, int k)
{
// if list is empty
if (head == null)
return;
// Stack to store data value of nodes.
Stack<Integer> st = new Stack<Integer>();
// Declare two pointers.
Node first = head, sec = head;
int cnt = 0;
// Move second pointer to kth node.
while (cnt < k)
{
sec = sec.next;
cnt++;
}
// Move first pointer to kth node from end
while (sec != null)
{
first = first.next;
sec = sec.next;
}
// Push last k nodes in stack
while (first != null)
{
st.push(first.data);
first = first.next;
}
// Last k nodes are reversed when pushed
// in stack. Pop all k elements of stack
// and print them.
while (!st.empty())
{
System.out.print(st.peek() + " ");
st.pop();
}
}
// Driver code
public static void main(String[] args)
{
// Create list: 1->2->3->4->5
Node head = getNode(1);
head.next = getNode(2);
head.next.next = getNode(3);
head.next.next.next = getNode(4);
head.next.next.next.next = getNode(5);
int k = 4;
// print the last k nodes
printLastKRev(head, k);
}
}
// This code is contributed by Princi Singh
Python3
# Python3 implementation to print the last k nodes
# of linked list in reverse order
# Node class
class Node:
# Function to initialise the node object
def __init__(self, data):
self.data = data # Assign data
self.next = None
# Function to get a new node
def getNode(data):
# allocate space
newNode = Node(0)
# put in data
newNode.data = data
newNode.next = None
return newNode
# Function to print the last k nodes
# of linked list in reverse order
def printLastKRev( head, k):
# if list is empty
if (head == None):
return
# Stack to store data value of nodes.
st = []
# Declare two pointers.
first = head
sec = head
cnt = 0
# Move second pointer to kth node.
while (cnt < k) :
sec = sec.next
cnt = cnt + 1
# Move first pointer to kth node from end
while (sec != None):
first = first.next
sec = sec.next
# Push last k nodes in stack
while (first != None):
st.append(first.data)
first = first.next
# Last k nodes are reversed when pushed
# in stack. Pop all k elements of stack
# and print them.
while (len(st)):
print( st[-1], end= " ")
st.pop()
# Driver code
# Create list: 1.2.3.4.5
head = getNode(1)
head.next = getNode(2)
head.next.next = getNode(3)
head.next.next.next = getNode(4)
head.next.next.next.next = getNode(5)
k = 4
# print the last k nodes
printLastKRev(head, k)
# This code is contributed by Arnab Kundu
C#
// C# implementation to print
// the last k nodes of linked list
// in reverse order
using System;
using System.Collections.Generic;
class GFG
{
// Structure of a node
class Node
{
public int data;
public Node next;
};
// Function to get a new node
static Node getNode(int data)
{
// allocate space
Node newNode = new Node();
// put in data
newNode.data = data;
newNode.next = null;
return newNode;
}
// Function to print the last k nodes
// of linked list in reverse order
static void printLastKRev(Node head, int k)
{
// if list is empty
if (head == null)
return;
// Stack to store data value of nodes.
Stack<int> st = new Stack<int>();
// Declare two pointers.
Node first = head, sec = head;
int cnt = 0;
// Move second pointer to kth node.
while (cnt < k)
{
sec = sec.next;
cnt++;
}
// Move first pointer to kth node from end
while (sec != null)
{
first = first.next;
sec = sec.next;
}
// Push last k nodes in stack
while (first != null)
{
st.Push(first.data);
first = first.next;
}
// Last k nodes are reversed when pushed
// in stack. Pop all k elements of stack
// and print them.
while (st.Count != 0)
{
Console.Write(st.Peek() + " ");
st.Pop();
}
}
// Driver code
public static void Main(String[] args)
{
// Create list: 1->2->3->4->5
Node head = getNode(1);
head.next = getNode(2);
head.next.next = getNode(3);
head.next.next.next = getNode(4);
head.next.next.next.next = getNode(5);
int k = 4;
// print the last k nodes
printLastKRev(head, k);
}
}
// This code is contributed by 29AjayKumar
JavaScript
<script>
// JavaScript implementation to print
// the last k nodes of linked list
// in reverse order
// Structure of a node
class Node {
constructor() {
this.data = 0;
this.next = null;
}
}
// Function to get a new node
function getNode(data) {
// allocate space
var newNode = new Node();
// put in data
newNode.data = data;
newNode.next = null;
return newNode;
}
// Function to print the last k nodes
// of linked list in reverse order
function printLastKRev(head, k) {
// if list is empty
if (head == null) return;
// Stack to store data value of nodes.
var st = [];
// Declare two pointers.
var first = head,
sec = head;
var cnt = 0;
// Move second pointer to kth node.
while (cnt < k) {
sec = sec.next;
cnt++;
}
// Move first pointer to kth node from end
while (sec != null) {
first = first.next;
sec = sec.next;
}
// Push last k nodes in stack
while (first != null) {
st.push(first.data);
first = first.next;
}
// Last k nodes are reversed when pushed
// in stack. Pop all k elements of stack
// and print them.
while (st.length != 0) {
document.write(st[st.length - 1] + " ");
st.pop();
}
}
// Driver code
// Create list: 1->2->3->4->5
var head = getNode(1);
head.next = getNode(2);
head.next.next = getNode(3);
head.next.next.next = getNode(4);
head.next.next.next.next = getNode(5);
var k = 4;
// print the last k nodes
printLastKRev(head, k);
</script>
Time Complexity: O(N)
Auxiliary Space: O(k)
Approach-2:
- Count the number of nodes in the linked list.
- Declare an array with the number of nodes as its size.
- Start storing the value of nodes of the linked list from the end of the array i.e. reverse manner.
- Print k values from starting of the array.
C++
#include <iostream>
using namespace std;
// Structure of a node
struct Node {
int data;
Node* next;
};
// Function to get a new node
Node* getNode(int data){
// allocate space
Node* newNode = new Node;
// put in data
newNode->data = data;
newNode->next = NULL;
return newNode;
}
// Function to print the last k nodes
// of linked list in reverse order
void printLastKRev(Node* head,
int& count, int k) {
struct Node* cur = head;
while(cur != NULL){
count++;
cur = cur->next;
}
int arr[count], temp = count;
cur = head;
while(cur != NULL){
arr[--temp] = cur->data;
cur = cur->next;
}
for(int i = 0; i < k; i++)
cout << arr[i] << " ";
}
//
// Driver code
int main()
{
// Create list: 1->2->3->4->5
Node* head = getNode(1);
head->next = getNode(2);
head->next->next = getNode(3);
head->next->next->next = getNode(4);
head->next->next->next->next = getNode(5);
head->next->next->next->next->next = getNode(10);
int k = 4, count = 0;
// print the last k nodes
printLastKRev(head, count, k);
return 0;
}
Java
// Java code implementation for above approach
class GFG
{
// Structure of a node
static class Node
{
int data;
Node next;
};
// Function to get a new node
static Node getNode(int data)
{
// allocate space
Node newNode = new Node();
// put in data
newNode.data = data;
newNode.next = null;
return newNode;
}
// Function to print the last k nodes
// of linked list in reverse order
static void printLastKRev(Node head,
int count, int k)
{
Node cur = head;
while(cur != null)
{
count++;
cur = cur.next;
}
int []arr = new int[count];
int temp = count;
cur = head;
while(cur != null)
{
arr[--temp] = cur.data;
cur = cur.next;
}
for(int i = 0; i < k; i++)
System.out.print(arr[i] + " ");
}
// Driver code
public static void main(String[] args)
{
// Create list: 1.2.3.4.5
Node head = getNode(1);
head.next = getNode(2);
head.next.next = getNode(3);
head.next.next.next = getNode(4);
head.next.next.next.next = getNode(5);
head.next.next.next.next.next = getNode(10);
int k = 4, count = 0;
// print the last k nodes
printLastKRev(head, count, k);
}
}
// This code is contributed by 29AjayKumar
Python3
# Python3 code implementation for above approach
# Structure of a node
class Node:
def __init__(self, data):
self.data = data
self.next = None
# Function to get a new node
def getNode(data):
# allocate space
newNode = Node(data)
return newNode
# Function to print the last k nodes
# of linked list in reverse order
def printLastKRev(head, count,k):
cur = head;
while(cur != None):
count += 1
cur = cur.next;
arr = [0 for i in range(count)]
temp = count;
cur = head;
while(cur != None):
temp -= 1
arr[temp] = cur.data;
cur = cur.next;
for i in range(k):
print(arr[i], end = ' ')
# Driver code
if __name__=='__main__':
# Create list: 1.2.3.4.5
head = getNode(1);
head.next = getNode(2);
head.next.next = getNode(3);
head.next.next.next = getNode(4);
head.next.next.next.next = getNode(5);
head.next.next.next.next.next = getNode(10);
k = 4
count = 0;
# print the last k nodes
printLastKRev(head, count, k);
# This code is contributed by rutvik_56
C#
// C# code implementation for above approach
using System;
class GFG
{
// Structure of a node
class Node
{
public int data;
public Node next;
};
// Function to get a new node
static Node getNode(int data)
{
// allocate space
Node newNode = new Node();
// put in data
newNode.data = data;
newNode.next = null;
return newNode;
}
// Function to print the last k nodes
// of linked list in reverse order
static void printLastKRev(Node head,
int count, int k)
{
Node cur = head;
while(cur != null)
{
count++;
cur = cur.next;
}
int []arr = new int[count];
int temp = count;
cur = head;
while(cur != null)
{
arr[--temp] = cur.data;
cur = cur.next;
}
for(int i = 0; i < k; i++)
Console.Write(arr[i] + " ");
}
// Driver code
public static void Main(String[] args)
{
// Create list: 1.2.3.4.5
Node head = getNode(1);
head.next = getNode(2);
head.next.next = getNode(3);
head.next.next.next = getNode(4);
head.next.next.next.next = getNode(5);
head.next.next.next.next.next = getNode(10);
int k = 4, count = 0;
// print the last k nodes
printLastKRev(head, count, k);
}
}
// This code is contributed by PrinciRaj1992
JavaScript
<script>
// Javascript implementation of the approach
// Structure of a node
class Node {
constructor() {
this.data = 0;
this.next = null;
}
}
// Function to get a new node
function getNode( data)
{
// allocate space
var newNode = new Node();
// put in data
newNode.data = data;
newNode.next = null;
return newNode;
}
// Function to print the last k nodes
// of linked list in reverse order
function printLastKRev( head, count, k)
{
var cur = head;
while(cur != null)
{
count++;
cur = cur.next;
}
let arr = new Array(count);
let temp = count;
cur = head;
while(cur != null)
{
arr[--temp] = cur.data;
cur = cur.next;
}
for(let i = 0; i < k; i++)
document.write(arr[i] + " ");
}
// Driver Code
// Create list: 1.2.3.4.5
var head = getNode(1);
head.next = getNode(2);
head.next.next = getNode(3);
head.next.next.next = getNode(4);
head.next.next.next.next = getNode(5);
head.next.next.next.next.next = getNode(10);
let k = 4, count = 0;
// print the last k nodes
printLastKRev(head, count, k);
// This code is contributed b jana_sayantan
</script>
Time Complexity: O(N)
Auxiliary Space: O(N)
Approach-3: The idea is to first reverse the linked list iteratively as discussed in following post: Reverse a linked list. After reversing print first k nodes of the reversed list. After printing restore the list by reversing the list again.
Below is the implementation of above approach:
C++
// C++ implementation to print the last k nodes
// of linked list in reverse order
#include <bits/stdc++.h>
using namespace std;
// Structure of a node
struct Node {
int data;
Node* next;
};
// Function to get a new node
Node* getNode(int data)
{
// allocate space
Node* newNode = new Node;
// put in data
newNode->data = data;
newNode->next = NULL;
return newNode;
}
// Function to reverse the linked list.
Node* reverseLL(Node* head)
{
if (!head || !head->next)
return head;
Node *prev = NULL, *next = NULL, *curr = head;
while (curr) {
next = curr->next;
curr->next = prev;
prev = curr;
curr = next;
}
return prev;
}
// Function to print the last k nodes
// of linked list in reverse order
void printLastKRev(Node* head, int k)
{
// if list is empty
if (!head)
return;
// Reverse linked list.
head = reverseLL(head);
Node* curr = head;
int cnt = 0;
// Print first k nodes of linked list.
while (cnt < k) {
cout << curr->data << " ";
cnt++;
curr = curr->next;
}
// Restore the list.
head = reverseLL(head);
}
// Driver code
int main()
{
// Create list: 1->2->3->4->5
Node* head = getNode(1);
head->next = getNode(2);
head->next->next = getNode(3);
head->next->next->next = getNode(4);
head->next->next->next->next = getNode(5);
int k = 4;
// print the last k nodes
printLastKRev(head, k);
return 0;
}
Java
// Java implementation to print the last k nodes
// of linked list in reverse order
import java.util.*;
class GFG
{
// Structure of a node
static class Node
{
int data;
Node next;
};
// Function to get a new node
static Node getNode(int data)
{
// allocate space
Node newNode = new Node();
// put in data
newNode.data = data;
newNode.next = null;
return newNode;
}
// Function to reverse the linked list.
static Node reverseLL(Node head)
{
if (head == null || head.next == null)
return head;
Node prev = null, next = null, curr = head;
while (curr != null)
{
next = curr.next;
curr.next = prev;
prev = curr;
curr = next;
}
return prev;
}
// Function to print the last k nodes
// of linked list in reverse order
static void printLastKRev(Node head, int k)
{
// if list is empty
if (head == null)
return;
// Reverse linked list.
head = reverseLL(head);
Node curr = head;
int cnt = 0;
// Print first k nodes of linked list.
while (cnt < k)
{
System.out.print(curr.data + " ");
cnt++;
curr = curr.next;
}
// Restore the list.
head = reverseLL(head);
}
// Driver code
public static void main(String[] args)
{
// Create list: 1->2->3->4->5
Node head = getNode(1);
head.next = getNode(2);
head.next.next = getNode(3);
head.next.next.next = getNode(4);
head.next.next.next.next = getNode(5);
int k = 4;
// print the last k nodes
printLastKRev(head, k);
}
}
// This code is contributed by 29AjayKumar
Python3
# Python3 implementation to print the
# last k nodes of linked list in
# reverse order
# Structure of a node
class Node:
def __init__(self, data):
self.data = data
self.next = None
# Function to get a new node
def getNode(data):
# Allocate space
newNode = Node(data)
return newNode
# Function to reverse the linked list.
def reverseLL(head):
if (not head or not head.next):
return head
prev = None
next = None
curr = head;
while (curr):
next = curr.next
curr.next = prev
prev = curr
curr = next
return prev
# Function to print the last k nodes
# of linked list in reverse order
def printLastKRev(head, k):
# If list is empty
if (not head):
return
# Reverse linked list.
head = reverseLL(head)
curr = head
cnt = 0
# Print first k nodes of linked list.
while (cnt < k):
print(curr.data, end = ' ')
cnt += 1
curr = curr.next
# Restore the list.
head = reverseLL(head)
# Driver code
if __name__=='__main__':
# Create list: 1.2.3.4.5
head = getNode(1)
head.next = getNode(2)
head.next.next = getNode(3)
head.next.next.next = getNode(4)
head.next.next.next.next = getNode(5)
k = 4
# Print the last k nodes
printLastKRev(head, k)
# This code is contributed by pratham76
C#
// C# implementation to print the last k nodes
// of linked list in reverse order
using System;
class GFG
{
// Structure of a node
public class Node
{
public int data;
public Node next;
};
// Function to get a new node
static Node getNode(int data)
{
// allocate space
Node newNode = new Node();
// put in data
newNode.data = data;
newNode.next = null;
return newNode;
}
// Function to reverse the linked list.
static Node reverseLL(Node head)
{
if (head == null || head.next == null)
return head;
Node prev = null, next = null, curr = head;
while (curr != null)
{
next = curr.next;
curr.next = prev;
prev = curr;
curr = next;
}
return prev;
}
// Function to print the last k nodes
// of linked list in reverse order
static void printLastKRev(Node head, int k)
{
// if list is empty
if (head == null)
return;
// Reverse linked list.
head = reverseLL(head);
Node curr = head;
int cnt = 0;
// Print first k nodes of linked list.
while (cnt < k)
{
Console.Write(curr.data + " ");
cnt++;
curr = curr.next;
}
// Restore the list.
head = reverseLL(head);
}
// Driver code
public static void Main(String[] args)
{
// Create list: 1->2->3->4->5
Node head = getNode(1);
head.next = getNode(2);
head.next.next = getNode(3);
head.next.next.next = getNode(4);
head.next.next.next.next = getNode(5);
int k = 4;
// print the last k nodes
printLastKRev(head, k);
}
}
// This code is contributed by Princi Singh
JavaScript
<script>
// Javascript implementation to print the last k nodes
// of linked list in reverse order
// Structure of a node
class Node
{
constructor()
{
this.data = 0;
this.next = null;
}
}
// Function to get a new node
function getNode(data)
{
// allocate space
let newNode = new Node();
// put in data
newNode.data = data;
newNode.next = null;
return newNode;
}
// Function to reverse the linked list.
function reverseLL(head)
{
if (head == null || head.next == null)
return head;
let prev = null, next = null, curr = head;
while (curr != null)
{
next = curr.next;
curr.next = prev;
prev = curr;
curr = next;
}
return prev;
}
// Function to print the last k nodes
// of linked list in reverse order
function printLastKRev(head,k)
{
// if list is empty
if (head == null)
return;
// Reverse linked list.
head = reverseLL(head);
let curr = head;
let cnt = 0;
// Print first k nodes of linked list.
while (cnt < k)
{
document.write(curr.data + " ");
cnt++;
curr = curr.next;
}
// Restore the list.
head = reverseLL(head);
}
// Driver code
// Create list: 1->2->3->4->5
let head = getNode(1);
head.next = getNode(2);
head.next.next = getNode(3);
head.next.next.next = getNode(4);
head.next.next.next.next = getNode(5);
let k = 4;
// print the last k nodes
printLastKRev(head, k);
// This code is contributed by avanitrachhadiya2155
</script>
Time Complexity: O(N)
Auxiliary Space: O(1)
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem