Print nodes of a Binary Search Tree in Top Level Order and Reversed Bottom Level Order alternately
Last Updated :
15 Jul, 2025
Given a Binary Search Tree, the task is to print the nodes of the BST in the following order:
- If the BST contains levels numbered from 1 to N then, the printing order is level 1, level N, level 2, level N - 1, and so on.
- The top-level order (1, 2, …) nodes are printed from left to right, while the bottom level order (N, N-1, ...) nodes are printed from right to left.
Examples:
Input: 
Output: 27 42 31 19 10 14 35
Explanation:
Level 1 from left to right: 27
Level 3 from right to left: 42 31 19 10
Level 2 from left to right: 14 35
Input: 
Output: 25 48 38 28 12 5 20 36 40 30 22 10
Approach: To solve the problem, the idea is to store the nodes of BST in ascending and descending order of levels and node values and print all the nodes of the same level alternatively between ascending and descending order. Follow the steps below to solve the problem:
- Initialize a Min Heap and a Max Heap to store the nodes in ascending and descending order of level and node values respectively.
- Perform a level order traversal on the given BST to store the nodes in the respective priority queues.
- Print all the nodes of each level one by one from the Min Heap followed by the Max Heap alternately.
- If any level in the Min Heap or Max Heap is found to be already printed, skip to the next level.
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Structure of a BST node
struct node {
int data;
struct node* left;
struct node* right;
};
// Utility function to create a new BST node
struct node* newnode(int d)
{
struct node* temp
= (struct node*)malloc(sizeof(struct node));
temp->left = NULL;
temp->right = NULL;
temp->data = d;
return temp;
}
// Function to print the nodes of a
// BST in Top Level Order and Reversed
// Bottom Level Order alternatively
void printBST(node* root)
{
// Stores the nodes in descending order
// of the level and node values
priority_queue<pair<int, int> > great;
// Stores the nodes in ascending order
// of the level and node values
priority_queue<pair<int, int>,
vector<pair<int, int> >,
greater<pair<int, int> > >
small;
// Initialize a stack for
// level order traversal
stack<pair<node*, int> > st;
// Push the root of BST
// into the stack
st.push({ root, 1 });
// Perform Level Order Traversal
while (!st.empty()) {
// Extract and pop the node
// from the current level
node* curr = st.top().first;
// Stores level of current node
int level = st.top().second;
st.pop();
// Store in the priority queues
great.push({ level, curr->data });
small.push({ level, curr->data });
// Traverse left subtree
if (curr->left)
st.push({ curr->left, level + 1 });
// Traverse right subtree
if (curr->right)
st.push({ curr->right, level + 1 });
}
// Stores the levels that are printed
unordered_set<int> levelsprinted;
// Print the nodes in the required manner
while (!small.empty() && !great.empty()) {
// Store the top level of traversal
int toplevel = small.top().first;
// If the level is already printed
if (levelsprinted.find(toplevel)
!= levelsprinted.end())
break;
// Otherwise
else
levelsprinted.insert(toplevel);
// Print nodes of same level
while (!small.empty()
&& small.top().first == toplevel) {
cout << small.top().second << " ";
small.pop();
}
// Store the bottom level of traversal
int bottomlevel = great.top().first;
// If the level is already printed
if (levelsprinted.find(bottomlevel)
!= levelsprinted.end()) {
break;
}
else {
levelsprinted.insert(bottomlevel);
}
// Print the nodes of same level
while (!great.empty()
&& great.top().first == bottomlevel) {
cout << great.top().second << " ";
great.pop();
}
}
}
// Driver Code
int main()
{
/*
Given BST
25
/ \
20 36
/ \ / \
10 22 30 40
/ \ / / \
5 12 28 38 48
*/
// Creating the BST
node* root = newnode(25);
root->left = newnode(20);
root->right = newnode(36);
root->left->left = newnode(10);
root->left->right = newnode(22);
root->left->left->left = newnode(5);
root->left->left->right = newnode(12);
root->right->left = newnode(30);
root->right->right = newnode(40);
root->right->left->left = newnode(28);
root->right->right->left = newnode(38);
root->right->right->right = newnode(48);
// Function Call
printBST(root);
return 0;
}
Java
// Java program for the above approach
import java.io.*;
import java.util.*;
public class GFG {
// Structure of a BST node
static class node {
int data;
node left;
node right;
}
//Structure of pair (used in PriorityQueue)
static class pair{
int x,y;
pair(int xx, int yy){
this.x=xx;
this.y=yy;
}
}
//Structure of pair (used in Stack)
static class StackPair{
node n;
int x;
StackPair(node nn, int xx){
this.n=nn;
this.x=xx;
}
}
// Utility function to create a new BST node
static node newnode(int d)
{
node temp = new node();
temp.left = null;
temp.right = null;
temp.data = d;
return temp;
}
//Custom Comparator for pair class to sort
//elements in increasing order
static class IncreasingOrder implements Comparator<pair>{
public int compare(pair p1, pair p2){
if(p1.x>p2.x){
return 1;
}else{
if(p1.x<p2.x){
return -1;
}else{
if(p1.y>p2.y){
return 1;
}else{
if(p1.y<p2.y){
return -1;
}else{
return 0;
}
}
}
}
}
}
// Custom Comparator for pair class to sort
// elements in decreasing order
static class DecreasingOrder implements Comparator<pair>{
public int compare(pair p1, pair p2){
if(p1.x>p2.x){
return -1;
}else{
if(p1.x<p2.x){
return 1;
}else{
if(p1.y>p2.y){
return -1;
}else{
if(p1.y<p2.y){
return 1;
}else{
return 0;
}
}
}
}
}
}
// Function to print the nodes of a
// BST in Top Level Order and Reversed
// Bottom Level Order alternatively
static void printBST(node root)
{
// Stores the nodes in descending order
// of the level and node values
PriorityQueue<pair> great = new PriorityQueue<>(new DecreasingOrder());
// Stores the nodes in ascending order
// of the level and node values
PriorityQueue<pair> small = new PriorityQueue<>(new IncreasingOrder());
// Initialize a stack for
// level order traversal
Stack<StackPair> st = new Stack<>();
// Push the root of BST
// into the stack
st.push(new StackPair(root,1));
// Perform Level Order Traversal
while (!st.isEmpty()) {
// Extract and pop the node
// from the current level
StackPair sp = st.pop();
node curr = sp.n;
// Stores level of current node
int level = sp.x;
// Store in the priority queues
great.add(new pair(level,curr.data));
small.add(new pair(level,curr.data));
// Traverse left subtree
if (curr.left!=null)
st.push(new StackPair(curr.left,level+1));
// Traverse right subtree
if (curr.right!=null)
st.push(new StackPair(curr.right,level+1));
}
// Stores the levels that are printed
HashSet<Integer> levelsprinted = new HashSet<>();
// Print the nodes in the required manner
while (!small.isEmpty() && !great.isEmpty()) {
// Store the top level of traversal
int toplevel = small.peek().x;
// If the level is already printed
if (levelsprinted.contains(toplevel))
break;
// Otherwise
else
levelsprinted.add(toplevel);
// Print nodes of same level
while (!small.isEmpty() && small.peek().x == toplevel) {
System.out.print(small.poll().y + " ");
}
// Store the bottom level of traversal
int bottomlevel = great.peek().x;
// If the level is already printed
if (levelsprinted.contains(bottomlevel)) {
break;
}
else {
levelsprinted.add(bottomlevel);
}
// Print the nodes of same level
while (!great.isEmpty() && great.peek().x == bottomlevel) {
System.out.print(great.poll().y + " ");
}
}
}
public static void main (String[] args) {
/*
Given BST
25
/ \
20 36
/ \ / \
10 22 30 40
/ \ / / \
5 12 28 38 48
*/
// Creating the BST
node root = newnode(25);
root.left = newnode(20);
root.right = newnode(36);
root.left.left = newnode(10);
root.left.right = newnode(22);
root.left.left.left = newnode(5);
root.left.left.right = newnode(12);
root.right.left = newnode(30);
root.right.right = newnode(40);
root.right.left.left = newnode(28);
root.right.right.left = newnode(38);
root.right.right.right = newnode(48);
// Function Call
printBST(root);
}
}
// This code is contributed by shruti456rawal
Python3
import queue
# Structure of a BST node
class Node:
def __init__(self, d):
self.data = d
self.left = None
self.right = None
# Function to print the nodes of a
# BST in Top Level Order and Reversed
# Bottom Level Order alternatively
def printBST(root):
# Stores the nodes in descending order
# of the level and node values
great = queue.PriorityQueue()
# Stores the nodes in ascending order
# of the level and node values
small = queue.PriorityQueue()
# Initialize a queue for
# level order traversal
q = queue.Queue()
# Push the root of BST
# into the queue
q.put((root, 1))
# Perform Level Order Traversal
while not q.empty():
# Extract and pop the node
# from the current level
curr, level = q.get()
# Store in the priority queues
great.put((-level, curr.data))
small.put((level, curr.data))
# Traverse left subtree
if curr.left:
q.put((curr.left, level + 1))
# Traverse right subtree
if curr.right:
q.put((curr.right, level + 1))
# Stores the levels that are printed
levelsprinted = set()
# Print the nodes in the required manner
while not small.empty() and not great.empty():
# Store the top level of traversal
toplevel = small.queue[0][0]
# If the level is already printed
if toplevel in levelsprinted:
break
# Otherwise
else:
levelsprinted.add(toplevel)
# Print nodes of same level
while not small.empty() and small.queue[0][0] == toplevel:
print(small.get()[1], end=' ')
# Store the bottom level of traversal
bottomlevel = -great.queue[0][0]
# If the level is already printed
if bottomlevel in levelsprinted:
break
else:
levelsprinted.add(bottomlevel)
# Print the nodes of same level
while not great.empty() and -great.queue[0][0] == bottomlevel:
print(great.get()[1], end=' ')
# Driver Code
if __name__ == '__main__':
"""
Given BST
25
/ \
20 36
/ \ / \
10 22 30 40
/ \ / / \
5 12 28 38 48
"""
# Creating the BST
root = Node(25)
root.left = Node(20)
root.right = Node(36)
root.left.left = Node(10)
root.left.right = Node(22)
root.left.left.left = Node(5)
root.left.left.right = Node(12)
root.right.left = Node(30)
root.right.right = Node(40)
root.right.left.left = Node(28)
root.right.right.left = Node(38)
root.right.right.right = Node(48)
# Function Call
printBST(root)
C#
using System;
using System.Collections.Generic;
class TreeNode {
public int value;
public TreeNode left, right;
public TreeNode(int value)
{
this.value = value;
left = null;
right = null;
}
}
class Program {
static List<List<int> >
GetLevelOrderTraversal(TreeNode root)
{
List<List<int> > ans = new List<List<int> >();
// This will store values of nodes for the level
// which we are currently traversing
List<int> currentLevel = new List<int>();
// We will be pushing null at the end of each level,
// So whenever we encounter a null, it means we have
// traversed all the nodes of the previous level
Queue<TreeNode> q = new Queue<TreeNode>();
q.Enqueue(root);
q.Enqueue(null);
while (q.Count > 1) {
TreeNode currentNode = q.Dequeue();
if (currentNode == null) {
ans.Add(currentLevel);
currentLevel = new List<int>();
if (q.Count == 0) {
// It means no more level to be
// traversed
return ans;
}
else {
q.Enqueue(null);
}
}
else {
currentLevel.Add(currentNode.value);
if (currentNode.left != null) {
q.Enqueue(currentNode.left);
}
if (currentNode.right != null) {
q.Enqueue(currentNode.right);
}
}
}
ans.Add(currentLevel);
return ans;
}
static void Main(string[] args)
{
/*
Given BST
25
/ \
20 36
/ \ / \
10 22 30 40
/ \ / / \
5 12 28 38 48
*/
// Creating the BST
TreeNode root = new TreeNode(25);
root.left = new TreeNode(20);
root.right = new TreeNode(36);
root.left.left = new TreeNode(10);
root.left.right = new TreeNode(22);
root.left.left.left = new TreeNode(5);
root.left.left.right = new TreeNode(12);
root.right.left = new TreeNode(30);
root.right.right = new TreeNode(40);
root.right.left.left = new TreeNode(28);
root.right.right.left = new TreeNode(38);
root.right.right.right = new TreeNode(48);
// Getting the value of nodes level wise
List<List<int> > levelOrderTraversal
= GetLevelOrderTraversal(root);
// Now traversing the tree alternatively from top
// and bottom using 2 pointers
int i = 0;
int j = levelOrderTraversal.Count - 1;
while (i <= j) {
if (i != j) {
for (int k = 0;
k < levelOrderTraversal[i].Count;
k++) {
Console.Write(levelOrderTraversal[i][k]
+ " ");
}
for (int k
= levelOrderTraversal[j].Count - 1;
k >= 0; k--) {
Console.Write(levelOrderTraversal[j][k]
+ " ");
}
}
else {
// This will take care of the case when we
// have odd number of levels in a BST
for (int k = 0;
k < levelOrderTraversal[i].Count;
k++) {
Console.Write(levelOrderTraversal[i][k]
+ " ");
}
}
i++;
j--;
}
}
}
// This Code is contributed by Gaurav_Arora
Output:25 48 38 28 12 5 20 36 40 30 22 10
Time Complexity: O(V log(V)), where V denotes the number of vertices in the given Binary Tree
Auxiliary Space: O(V)
Iterative Method(using queue):
Follow the steps to solve the given problem:
1). Perform level order traversal and keep track to level at each vertex of given tree.
2). Declare a queue to perform level order traversal and a vector of vector to store the level order traversal respectively to levels of given binary tree.
3). After storing all the vertex level wise we will initialize two iterator first will print data in level order and second will print the reverse level order and after printing the we will first first iterator and decrease the second iterator.
Below is the implementation of above approach:
C++
// C++ Program for the above approach
#include <bits/stdc++.h>
using namespace std;
// structure of tree node
struct Node {
int data;
struct Node* left;
struct Node* right;
Node(int data)
{
this->data = data;
this->left = NULL;
this->right = NULL;
}
};
// function to find the height of binary tree
int height(Node* root)
{
if (root == NULL)
return 0;
return max(height(root->left), height(root->right)) + 1;
}
// Function to print the nodes of a
// BST in Top Level Order and Reversed
// Bottom Level Order alternatively
void printBST(Node* root)
{
// base cas
if (root == NULL)
return;
vector<vector<int> > ans(height(root));
int level = 0;
// initializing the queue for level order traversal
queue<Node*> q;
q.push(root);
while (!q.empty()) {
int n = q.size();
for (int i = 0; i < n; i++) {
Node* front_node = q.front();
q.pop();
ans[level].push_back(front_node->data);
if (front_node->left != NULL)
q.push(front_node->left);
if (front_node->right != NULL)
q.push(front_node->right);
}
level++;
}
auto it1 = ans.begin();
auto it2 = ans.end() - 1;
while (it1 < it2) {
for (int i : *it1) {
cout << i << " ";
}
for (int i = (*it2).size() - 1; i >= 0; i--) {
cout << (*it2)[i] << " ";
}
it1++;
it2--;
}
if (it1 == it2) {
for (int i : *it1) {
cout << i << " ";
}
}
}
// driver code to test above function
int main()
{
// creating the binary tree
Node* root = new Node(25);
root->left = new Node(20);
root->right = new Node(36);
root->left->left = new Node(10);
root->left->right = new Node(22);
root->left->left->left = new Node(5);
root->left->left->right = new Node(12);
root->right->left = new Node(30);
root->right->right = new Node(40);
root->right->left->left = new Node(28);
root->right->right->left = new Node(38);
root->right->right->right = new Node(48);
printBST(root);
return 0;
}
// THIS CODE IS CONTRIBUTED BY KIRTI
// AGARWAL(KIRTIAGARWAL23121999)
Java
import java.util.*;
// structure of tree node
class Node {
int data;
Node left, right;
Node(int data)
{
this.data = data;
this.left = null;
this.right = null;
}
}
// class to print the nodes of a
// BST in Top Level Order and Reversed
// Bottom Level Order alternatively
class Main {
// function to find the height of binary tree
public static int height(Node root)
{
if (root == null)
return 0;
return Math.max(height(root.left),
height(root.right))
+ 1;
}
public static void printBST(Node root)
{
// base case
if (root == null)
return;
List<List<Integer> > ans = new ArrayList<>();
int level = 0;
// initializing the queue for level order traversal
Queue<Node> q = new LinkedList<>();
q.add(root);
while (!q.isEmpty()) {
int n = q.size();
List<Integer> currLevel = new ArrayList<>();
for (int i = 0; i < n; i++) {
Node front_node = q.poll();
currLevel.add(front_node.data);
if (front_node.left != null)
q.add(front_node.left);
if (front_node.right != null)
q.add(front_node.right);
}
ans.add(currLevel);
level++;
}
int it1 = 0;
int it2 = ans.size() - 1;
while (it1 < it2) {
for (int i : ans.get(it1)) {
System.out.print(i + " ");
}
for (int i = ans.get(it2).size() - 1; i >= 0;
i--) {
System.out.print(ans.get(it2).get(i) + " ");
}
it1++;
it2--;
}
if (it1 == it2) {
for (int i : ans.get(it1)) {
System.out.print(i + " ");
}
}
}
// driver code to test above function
public static void main(String[] args)
{
// creating the binary tree
Node root = new Node(25);
root.left = new Node(20);
root.right = new Node(36);
root.left.left = new Node(10);
root.left.right = new Node(22);
root.left.left.left = new Node(5);
root.left.left.right = new Node(12);
root.right.left = new Node(30);
root.right.right = new Node(40);
root.right.left.left = new Node(28);
root.right.right.left = new Node(38);
root.right.right.right = new Node(48);
printBST(root);
}
}
JavaScript
// JavaScript program for the above approach
// structure of tree node
class Node{
constructor(data){
this.data = data;
this.left = null;
this.right = null;
}
}
// function to find the height of binary tree
function height(root){
if(root == null) return 0;
return Math.max(height(root.left), height(root.right)) + 1;
}
// function to print the nodes of a
// BST in Top level order and reversed
// bottom level order alternatively
function printBST(root){
// base case
if(root == null) return;
let ans = [];
for(let i = 0; i<height(root); i++){
ans[i] = [];
}
let level = 0;
// initializing the queue for level roder traversal
let q = [];
q.push(root);
while(q.length > 0){
let n = q.length;
for(let i = 0; i<n; i++){
let front_node = q.shift();
ans[level].push(front_node.data);
if(front_node.left) q.push(front_node.left);
if(front_node.right) q.push(front_node.right);
}
level++;
}
let it1 = 0;
let it2 = ans.length - 1;
while(it1 < it2){
for(let i = 0; i<ans[it1].length; i++){
console.log(ans[it1][i] + " ");
}
for(let i = ans[it2].length -1; i >= 0; i--){
console.log(ans[it2][i] + " ");
}
it1++;
it2--;
}
if(it1 == it2){
for(let i = 0; i<ans[it1].length; i++){
console.log(ans[it1][i] + " ");
}
}
}
// driver program to test above function
let root = new Node(25);
root.left = new Node(20);
root.right = new Node(36);
root.left.left = new Node(10);
root.left.right = new Node(22);
root.left.left.left = new Node(5);
root.left.left.right = new Node(12);
root.right.left = new Node(30);
root.right.right = new Node(40);
root.right.left.left = new Node(28);
root.right.right.left = new Node(38);
root.right.right.right = new Node(48);
printBST(root);
// THIS CODE IS CONTRIBUTED BY YASH AGARWAL(YASHAGARWAL2852002)
Python
# Define the structure of tree node
class Node:
def __init__(self, data):
self.data = data
self.left = None
self.right = None
# Function to find the height of binary tree
def height(root):
if root is None:
return 0
return max(height(root.left), height(root.right)) + 1
# Function to print the nodes of a BST in top-level order and reversed bottom-level order alternatively
def printBST(root):
# Base case
if root is None:
return
# Initialize a list of empty lists to store nodes at each level
ans = [[] for i in range(height(root))]
level = 0
# Intialize the queue for level order traversal
q = []
q.append(root)
# Traverse the tree in level order and store nodes at each level in the ans list
while len(q) > 0:
n = len(q)
for i in range(n):
front_node = q.pop(0)
ans[level].append(front_node.data)
if front_node.left:
q.append(front_node.left)
if front_node.right:
q.append(front_node.right)
level += 1
# Traverse the ans list and print nodes in top-level order and reversed bottom-level order alternatively
it1 = 0
it2 = len(ans) - 1
while it1 < it2:
# Print nodes in top-level order
for i in range(len(ans[it1])):
print(ans[it1][i])
# Print nodes in reversed bottom-level order
for i in range(len(ans[it2])-1, -1, -1):
print(ans[it2][i])
it1 += 1
it2 -= 1
# If there is only one level left, print nodes in top-level order
if it1 == it2:
for i in range(len(ans[it1])):
print(ans[it1][i])
# Driver program to test the above function
root = Node(25)
root.left = Node(20)
root.right = Node(36)
root.left.left = Node(10)
root.left.right = Node(22)
root.left.left.left = Node(5)
root.left.left.right = Node(12)
root.right.left = Node(30)
root.right.right = Node(40)
root.right.left.left = Node(28)
root.right.right.left = Node(38)
root.right.right.right = Node(48)
printBST(root)
C#
// C# Program for the above approach
using System;
using System.Collections.Generic;
// structure of tree node
class Node {
public int data;
public Node left, right;
public Node(int data)
{
this.data = data;
this.left = null;
this.right = null;
}
}
// class to print the nodes of a
// BST in Top Level Order and Reversed
// Bottom Level Order alternatively
class MainClass {
// function to find the height of binary tree
public static int Height(Node root)
{
if (root == null)
return 0;
return Math.Max(Height(root.left),
Height(root.right))
+ 1;
}
public static void PrintBST(Node root)
{
// base case
if (root == null)
return;
List<List<int> > ans = new List<List<int> >();
int level = 0;
// initializing the queue for level order traversal
Queue<Node> q = new Queue<Node>();
q.Enqueue(root);
while (q.Count != 0) {
int n = q.Count;
List<int> currLevel = new List<int>();
for (int i = 0; i < n; i++) {
Node front_node = q.Dequeue();
currLevel.Add(front_node.data);
if (front_node.left != null)
q.Enqueue(front_node.left);
if (front_node.right != null)
q.Enqueue(front_node.right);
}
ans.Add(currLevel);
level++;
}
int it1 = 0;
int it2 = ans.Count - 1;
while (it1 < it2) {
foreach(int i in ans[it1])
{
Console.Write(i + " ");
}
for (int i = ans[it2].Count - 1; i >= 0; i--) {
Console.Write(ans[it2][i] + " ");
}
it1++;
it2--;
}
if (it1 == it2) {
foreach(int i in ans[it1])
{
Console.Write(i + " ");
}
}
}
// driver code to test above function
public static void Main()
{
// creating the binary tree
Node root = new Node(25);
root.left = new Node(20);
root.right = new Node(36);
root.left.left = new Node(10);
root.left.right = new Node(22);
root.left.left.left = new Node(5);
root.left.left.right = new Node(12);
root.right.left = new Node(30);
root.right.right = new Node(40);
root.right.left.left = new Node(28);
root.right.right.left = new Node(38);
root.right.right.right = new Node(48);
PrintBST(root);
}
}
// This code is contributed by adityashatmfh
Output25 48 38 28 12 5 20 36 40 30 22 10
Time Complexity: O(V) where V is the number of vertices in given binary tree.
Auxiliary Space: O(V) due to queue and vector of ans.
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem