Maximum sum square sub-matrix of given size
Last Updated :
23 Jul, 2025
Given a 2d array mat[][] of order n * n, and an integer k. Your task is to find a submatrix of order k * k, such that sum of all the elements in the submatrix is maximum possible.
Note: Matrix mat[][] contains zero, positive and negative integers.
Examples:

Input: k = 3
mat[][] = [ [ 1, 2, -1, 4 ]
[ -8, -3, 4, 2 ]
[ 3, 8, 10, -8 ]
[ -4, -1, 1, 7 ] ]
Output: 20
Explanation: The submatrix enclosed in blue boundary is the maximum sum submatrix of order 3 * 3.
Input: k = 3
mat[][] = [ [ 1, 1, 1, 1, 1 ]
[ 2, 2, 2, 2, 2 ]
[ 3, 8, 6, 7, 3 ]
[ 4, 4, 4, 4, 4 ]
[ 5, 5, 5, 5, 5 ] ]
Output: 48
Explanation: The following submatrix of order k * k has sum 48, which is maximum possible:
[ [ 8, 6, 7 ]
[ 4, 4, 4 ]
[ 5, 5, 5 ] ]
Input: k = 1
mat[][] = [ [ 4 ] ]
Output: 4
Explanation: The given matrix contains only a single element, thus the max possible sum is 4.
This problem is mainly an extension of Maximum Sum of a Subarray of Size k
[Naive Approach] - Generating All Submatrices - O(n ^ 2 * k ^ 2) Time and O(1) Space
The idea is to generate all possible submatrices of order k * k, and find sum of its elements. The maximum obtained sum is the answer.
We run two nested loops, where the outer loop runs from 0 to n - k, and marks the row, while the inner row runs from 0 to n - k and marks the current column. For each iteration of the inner loop, again run two nested loops, where the outer loop runs from i to i + k - 1, and inner loop runs from j to j + k - 1. For each iteration of innermost loop add the cell value to the sum. At last store the max of obtained sum and current answer.
C++
#include <bits/stdc++.h>
using namespace std;
// Function to find the submatrix of
// order k * k with maximum sum of elements
int maximumSum(vector<vector<int>> &mat, int k) {
int n = mat.size();
// to store the answer
int ans = INT_MIN;
// generate all possible submatrix
// of order k * k
for(int i = 0; i <= n - k; i++) {
for(int j = 0; j <= n - k; j++) {
// compute sum of submatrix
// of order k * k
int sum = 0;
for(int p = i; p < i + k; p++) {
for(int q = j; q < j + k; q++) {
sum += mat[p][q];
}
}
// update the maximum sum
ans = max(ans, sum);
}
}
return ans;
}
int main() {
vector<vector<int>> mat = {
{ 1, 2, -1, 4 },
{ -8, -3, 4, 2 },
{ 3, 8, 10, -8 },
{ -4, -1, 1, 7 } };
int k = 3;
cout << maximumSum(mat, k);
return 0;
}
Java
// Function to find the submatrix of
// order k * k with maximum sum of elements
import java.util.*;
class GfG {
// Function to find the submatrix of
// order k * k with maximum sum of elements
static int maximumSum(int[][] mat, int k) {
int n = mat.length;
// to store the answer
int ans = Integer.MIN_VALUE;
// generate all possible submatrix
// of order k * k
for (int i = 0; i <= n - k; i++) {
for (int j = 0; j <= n - k; j++) {
// compute sum of submatrix
// of order k * k
int sum = 0;
for (int p = i; p < i + k; p++) {
for (int q = j; q < j + k; q++) {
sum += mat[p][q];
}
}
// update the maximum sum
ans = Math.max(ans, sum);
}
}
return ans;
}
public static void main(String[] args) {
int[][] mat = {
{ 1, 2, -1, 4 },
{ -8, -3, 4, 2 },
{ 3, 8, 10, -8 },
{ -4, -1, 1, 7 }
};
int k = 3;
System.out.println(maximumSum(mat, k));
}
}
Python
# Function to find the submatrix of
# order k * k with maximum sum of elements.
def maximumSum(mat, k):
n = len(mat)
# to store the answer
ans = -float('inf')
# generate all possible submatrix
# of order k * k
for i in range(0, len(mat) - k + 1):
for j in range(0, len(mat) - k + 1):
# compute sum of submatrix
# of order k * k
sum_val = 0
for p in range(i, i + k):
for q in range(j, j + k):
sum_val += mat[p][q]
# update the maximum sum
ans = max(ans, sum_val)
return ans
if __name__ == "__main__":
mat = [
[ 1, 2, -1, 4 ],
[ -8, -3, 4, 2 ],
[ 3, 8, 10, -8 ],
[ -4, -1, 1, 7 ]
]
k = 3
print(maximumSum(mat, k))
C#
// Function to find the submatrix of
// order k * k with maximum sum of elements
using System;
using System.Collections.Generic;
class GfG {
// Function to find the submatrix of
// order k * k with maximum sum of elements
static int maximumSum(List<List<int>> mat, int k) {
int n = mat.Count;
// to store the answer
int ans = int.MinValue;
// generate all possible submatrix
// of order k * k
for (int i = 0; i <= n - k; i++) {
for (int j = 0; j <= n - k; j++) {
// compute sum of submatrix
// of order k * k
int sum = 0;
for (int p = i; p < i + k; p++) {
for (int q = j; q < j + k; q++) {
sum += mat[p][q];
}
}
// update the maximum sum
ans = Math.Max(ans, sum);
}
}
return ans;
}
static void Main() {
List<List<int>> mat = new List<List<int>> {
new List<int> { 1, 2, -1, 4 },
new List<int> { -8, -3, 4, 2 },
new List<int> { 3, 8, 10, -8 },
new List<int> { -4, -1, 1, 7 }
};
int k = 3;
Console.WriteLine(maximumSum(mat, k));
}
}
JavaScript
// Function to find the submatrix of
// order k * k with maximum sum of elements.
function maximumSum(mat, k) {
let n = mat.length;
// to store the answer
let ans = -Infinity;
// generate all possible submatrix
// of order k * k
for (let i = 0; i <= n - k; i++) {
for (let j = 0; j <= n - k; j++) {
// compute sum of submatrix
// of order k * k
let sum = 0;
for (let p = i; p < i + k; p++) {
for (let q = j; q < j + k; q++) {
sum += mat[p][q];
}
}
// update the maximum sum
ans = Math.max(ans, sum);
}
}
return ans;
}
let mat = [
[ 1, 2, -1, 4 ],
[ -8, -3, 4, 2 ],
[ 3, 8, 10, -8 ],
[ -4, -1, 1, 7 ]
];
let k = 3;
console.log(maximumSum(mat, k));
[Expected Approach] - By Calculating Strips Sum - O(n ^ 2) Time and O(n ^ 2) Space
The idea is to preprocess the given square matrix. In the pre-processing step, calculate sum of all vertical strips of size k x 1 in a temporary square matrix stripSum[][]. Once we have sum of all vertical strips, we can calculate sum of first sub-square in a row as sum of first k strips in that row, and for remaining sub-squares, we can calculate sum in constant time by removing the leftmost strip of previous sub-square and adding the rightmost strip of new square.
C++
#include <bits/stdc++.h>
using namespace std;
// Function to find the submatrix of
// order k * k with maximum sum of elements
int maximumSum(vector<vector<int>> &mat, int k) {
int n = mat.size();
// create 2d array to store strips sum
vector<vector<int>> stripSum(n, vector<int>(n, 0));
// calculate the sum column by column
for(int j = 0; j < n; j++) {
int sum = 0;
// calculate sum of first k * 1 strip
for(int i = 0; i < k; i++) {
sum += mat[i][j];
}
stripSum[0][j] = sum;
// calculate sum of remaining strips
for(int i = 1; i <= n - k; i++) {
sum += mat[i + k - 1][j] - mat[i - 1][j];
stripSum[i][j] = sum;
}
}
// to store the answer
int ans = INT_MIN;
// calculate the sum of k * k
// submatrix using the sum of strips
for(int i = 0; i <= n - k; i++) {
int sum = 0;
// calculate sum of first k strips
for(int j = 0; j < k; j++) {
sum += stripSum[i][j];
}
// update the maximum sum
ans = max(ans, sum);
// calculate sum of remaining strips
for(int j = 1; j <= n - k; j++) {
sum += stripSum[i][j + k - 1] - stripSum[i][j - 1];
ans = max(ans, sum);
}
}
return ans;
}
int main() {
vector<vector<int>> mat = {
{ 1, 2, -1, 4 },
{ -8, -3, 4, 2 },
{ 3, 8, 10, -8 },
{ -4, -1, 1, 7 } };
int k = 3;
cout << maximumSum(mat, k);
return 0;
}
Java
// Function to find the submatrix of
// order k * k with maximum sum of elements
import java.util.*;
class GfG {
// Function to find the submatrix of
// order k * k with maximum sum of elements
static int maximumSum(int[][] mat, int k) {
int n = mat.length;
// create 2d array to store strips sum
int[][] stripSum = new int[n][n];
// calculate the sum column by column
for (int j = 0; j < n; j++) {
int sum = 0;
// calculate sum of first k * 1 strip
for (int i = 0; i < k; i++) {
sum += mat[i][j];
}
stripSum[0][j] = sum;
// calculate sum of remaining strips
for (int i = 1; i <= n - k; i++) {
sum += mat[i + k - 1][j] - mat[i - 1][j];
stripSum[i][j] = sum;
}
}
// to store the answer
int ans = Integer.MIN_VALUE;
// calculate the sum of k * k
// submatrix using the sum of strips
for (int i = 0; i <= n - k; i++) {
int sum = 0;
// calculate sum of first k strips
for (int j = 0; j < k; j++) {
sum += stripSum[i][j];
}
// update the maximum sum
ans = Math.max(ans, sum);
// calculate sum of remaining strips
for (int j = 1; j <= n - k; j++) {
sum += stripSum[i][j + k - 1] - stripSum[i][j - 1];
ans = Math.max(ans, sum);
}
}
return ans;
}
public static void main(String[] args) {
int[][] mat = {
{ 1, 2, -1, 4 },
{ -8, -3, 4, 2 },
{ 3, 8, 10, -8 },
{ -4, -1, 1, 7 }
};
int k = 3;
System.out.println(maximumSum(mat, k));
}
}
Python
# Function to find the submatrix of
# order k * k with maximum sum of elements.
def maximumSum(mat, k):
n = len(mat)
# create 2d array to store strips sum
stripSum = [[0 for _ in range(n)] for _ in range(n)]
# calculate the sum column by column
for j in range(n):
sum_val = 0
# calculate sum of first k * 1 strip
for i in range(k):
sum_val += mat[i][j]
stripSum[0][j] = sum_val
# calculate sum of remaining strips
for i in range(1, n - k + 1):
sum_val += mat[i + k - 1][j] - mat[i - 1][j]
stripSum[i][j] = sum_val
# to store the answer
ans = -float('inf')
# calculate the sum of k * k
# submatrix using the sum of strips
for i in range(0, n - k + 1):
sum_val = 0
# calculate sum of first k strips
for j in range(k):
sum_val += stripSum[i][j]
ans = max(ans, sum_val)
# calculate sum of remaining strips
for j in range(1, n - k + 1):
sum_val += stripSum[i][j + k - 1] - stripSum[i][j - 1]
ans = max(ans, sum_val)
return ans
if __name__ == "__main__":
mat = [
[ 1, 2, -1, 4 ],
[ -8, -3, 4, 2 ],
[ 3, 8, 10, -8 ],
[ -4, -1, 1, 7 ]
]
k = 3
print(maximumSum(mat, k))
C#
// Function to find the submatrix of
// order k * k with maximum sum of elements
using System;
using System.Collections.Generic;
class GfG {
// Function to find the submatrix of
// order k * k with maximum sum of elements
static int maximumSum(List<List<int>> mat, int k) {
int n = mat.Count;
// create 2d array to store strips sum
List<List<int>> stripSum = new List<List<int>>();
for (int i = 0; i < n; i++) {
List<int> row = new List<int>();
for (int j = 0; j < n; j++) {
row.Add(0);
}
stripSum.Add(row);
}
// calculate the sum column by column
for (int j = 0; j < n; j++) {
int sum = 0;
// calculate sum of first k * 1 strip
for (int i = 0; i < k; i++) {
sum += mat[i][j];
}
stripSum[0][j] = sum;
// calculate sum of remaining strips
for (int i = 1; i <= n - k; i++) {
sum += mat[i + k - 1][j] - mat[i - 1][j];
stripSum[i][j] = sum;
}
}
// to store the answer
int ans = int.MinValue;
// calculate the sum of k * k
// submatrix using the sum of strips
for (int i = 0; i <= n - k; i++) {
int sum = 0;
// calculate sum of first k strips
for (int j = 0; j < k; j++) {
sum += stripSum[i][j];
}
ans = Math.Max(ans, sum);
// calculate sum of remaining strips
for (int j = 1; j <= n - k; j++) {
sum += stripSum[i][j + k - 1] - stripSum[i][j - 1];
ans = Math.Max(ans, sum);
}
}
return ans;
}
static void Main() {
List<List<int>> mat = new List<List<int>> {
new List<int> { 1, 2, -1, 4 },
new List<int> { -8, -3, 4, 2 },
new List<int> { 3, 8, 10, -8 },
new List<int> { -4, -1, 1, 7 }
};
int k = 3;
Console.WriteLine(maximumSum(mat, k));
}
}
JavaScript
// Function to find the submatrix of
// order k * k with maximum sum of elements.
function maximumSum(mat, k) {
let n = mat.length;
// create 2d array to store strips sum
let stripSum = new Array(n);
for (let i = 0; i < n; i++) {
stripSum[i] = new Array(n).fill(0);
}
// calculate the sum column by column
for (let j = 0; j < n; j++) {
let sum = 0;
// calculate sum of first k * 1 strip
for (let i = 0; i < k; i++) {
sum += mat[i][j];
}
stripSum[0][j] = sum;
// calculate sum of remaining strips
for (let i = 1; i <= n - k; i++) {
sum += mat[i + k - 1][j] - mat[i - 1][j];
stripSum[i][j] = sum;
}
}
// to store the answer
let ans = -Infinity;
// calculate the sum of k * k
// submatrix using the sum of strips
for (let i = 0; i <= n - k; i++) {
let sum = 0;
// calculate sum of first k strips
for (let j = 0; j < k; j++) {
sum += stripSum[i][j];
}
ans = Math.max(ans, sum);
// calculate sum of remaining strips
for (let j = 1; j <= n - k; j++) {
sum += stripSum[i][j + k - 1] - stripSum[i][j - 1];
ans = Math.max(ans, sum);
}
}
return ans;
}
let mat = [
[ 1, 2, -1, 4 ],
[ -8, -3, 4, 2 ],
[ 3, 8, 10, -8 ],
[ -4, -1, 1, 7 ]
];
let k = 3;
console.log(maximumSum(mat, k));
[Alternate Approach] - Using Dynamic Programming - O(n ^ 2) Time and O(n ^ 2) Space
The idea is to use Dynamic Programming to precompute the sum of all the sub-matrices having their top-left cell [0, 0] (Like prefix sum in 1 D array), and then use it to find the sums of submatrices of order k * k and pick the maximum possible. To do so, create a 2d array dp[][] of order n * n, where dp[i][j] stores the sum of all the elements of sub-matrix mat[0...i][0...j].
Follow the below given steps:
- Create a 2d array dp[][] of order n * n to store the sum of elements of all the submatrices
- To calculate the sum of elements of submatrix mat[0...i][0...j], i.e., dp[i][j], add dp[i-1][j], dp[i][j-1], and mat[i][j], and subtract dp[i-1][j-1], as this submatrix will get added twice while adding two other sub-matrices.
- Now, to calculate the sum of elements of sub-matrix having its right-bottom cell [i, j], subtract dp[i-k][j] and dp[i][j - k] from dp[i][j], and add dp[i - k][j - k], as this overlapping sub-matrix will get deleted twice.
- Do the same for all the cells of the matrix, and store the maximum value as the answer.
C++
#include <bits/stdc++.h>
using namespace std;
// Function to find the submatrix of
// order k * k with maximum sum of elements
int maximumSum(vector<vector<int>> &mat, int k) {
int n = mat.size();
// create a 2d array to store sum
// elements of submatrices
vector<vector<int>> dp(n, vector<int>(n, 0));
// calculate the sum of submatrices
for(int i = 0; i < n; i++) {
for(int j = 0; j < n; j++) {
// add the current element
dp[i][j] = mat[i][j];
// add the submatrix ending at left
if(j > 0) {
dp[i][j] += dp[i][j - 1];
}
// add the submatrix ending at top
if(i > 0) {
dp[i][j] += dp[i - 1][j];
}
// remove the overlapping submatrix
if(i > 0 && j > 0) {
dp[i][j] -= dp[i - 1][j - 1];
}
}
}
// to store the answer
int ans = INT_MIN;
// generate all possible submatrices
// of order k * k
for(int i = k - 1; i < n; i++) {
for(int j = k - 1; j < n; j++) {
// compute sum of submatrix
// of order k * k
int sum = dp[i][j];
// remove the submatrix ending at top
if(i >= k) {
sum -= dp[i - k][j];
}
// remove the submatrix ending at left
if(j >= k) {
sum -= dp[i][j - k];
}
// add the overlapping submatrix
if(i >= k && j >= k) {
sum += dp[i - k][j - k];
}
// update the maximum sum
ans = max(ans, sum);
}
}
return ans;
}
int main() {
vector<vector<int>> mat = {
{ 1, 2, -1, 4 },
{ -8, -3, 4, 2 },
{ 3, 8, 10, -8 },
{ -4, -1, 1, 7 } };
int k = 3;
cout << maximumSum(mat, k);
return 0;
}
Java
// Function to find the submatrix of
// order k * k with maximum sum of elements
import java.util.*;
class GfG {
// Function to find the submatrix of
// order k * k with maximum sum of elements
static int maximumSum(int[][] mat, int k) {
int n = mat.length;
// create 2d array to store sum
// elements of submatrices
int[][] dp = new int[n][n];
// calculate the sum of submatrices
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
// add the current element
dp[i][j] = mat[i][j];
// add the submatrix ending at left
if (j > 0) {
dp[i][j] += dp[i][j - 1];
}
// add the submatrix ending at top
if (i > 0) {
dp[i][j] += dp[i - 1][j];
}
// remove the overlapping submatrix
if (i > 0 && j > 0) {
dp[i][j] -= dp[i - 1][j - 1];
}
}
}
// to store the answer
int ans = Integer.MIN_VALUE;
// generate all possible submatrices
// of order k * k
for (int i = k - 1; i < n; i++) {
for (int j = k - 1; j < n; j++) {
// compute sum of submatrix
// of order k * k
int sum = dp[i][j];
// remove the submatrix ending at top
if (i >= k) {
sum -= dp[i - k][j];
}
// remove the submatrix ending at left
if (j >= k) {
sum -= dp[i][j - k];
}
// add the overlapping submatrix
if (i >= k && j >= k) {
sum += dp[i - k][j - k];
}
// update the maximum sum
ans = Math.max(ans, sum);
}
}
return ans;
}
public static void main(String[] args) {
int[][] mat = {
{ 1, 2, -1, 4 },
{ -8, -3, 4, 2 },
{ 3, 8, 10, -8 },
{ -4, -1, 1, 7 }
};
int k = 3;
System.out.println(maximumSum(mat, k));
}
}
Python
# Function to find the submatrix of
# order k * k with maximum sum of elements.
def maximumSum(mat, k):
n = len(mat)
# create 2d array to store sum
# elements of submatrices
dp = [[0 for _ in range(n)] for _ in range(n)]
# calculate the sum of submatrices
for i in range(n):
for j in range(n):
# add the current element
dp[i][j] = mat[i][j]
# add the submatrix ending at left
if j > 0:
dp[i][j] += dp[i][j - 1]
# add the submatrix ending at top
if i > 0:
dp[i][j] += dp[i - 1][j]
# remove the overlapping submatrix
if i > 0 and j > 0:
dp[i][j] -= dp[i - 1][j - 1]
# to store the answer
ans = -float('inf')
# generate all possible submatrices
# of order k * k
for i in range(k - 1, n):
for j in range(k - 1, n):
# compute sum of submatrix
# of order k * k
sum_val = dp[i][j]
# remove the submatrix ending at top
if i >= k:
sum_val -= dp[i - k][j]
# remove the submatrix ending at left
if j >= k:
sum_val -= dp[i][j - k]
# add the overlapping submatrix
if i >= k and j >= k:
sum_val += dp[i - k][j - k]
# update the maximum sum
ans = max(ans, sum_val)
return ans
if __name__ == "__main__":
mat = [
[ 1, 2, -1, 4 ],
[ -8, -3, 4, 2 ],
[ 3, 8, 10, -8 ],
[ -4, -1, 1, 7 ]
]
k = 3
print(maximumSum(mat, k))
C#
// Function to find the submatrix of
// order k * k with maximum sum of elements
using System;
using System.Collections.Generic;
class GfG {
// Function to find the submatrix of
// order k * k with maximum sum of elements
static int maximumSum(List<List<int>> mat, int k) {
int n = mat.Count;
// create 2d array to store sum
// elements of submatrices
List<List<int>> dp = new List<List<int>>();
for (int i = 0; i < n; i++) {
List<int> row = new List<int>();
for (int j = 0; j < n; j++) {
row.Add(0);
}
dp.Add(row);
}
// calculate the sum of submatrices
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
// add the current element
dp[i][j] = mat[i][j];
// add the submatrix ending at left
if (j > 0) {
dp[i][j] += dp[i][j - 1];
}
// add the submatrix ending at top
if (i > 0) {
dp[i][j] += dp[i - 1][j];
}
// remove the overlapping submatrix
if (i > 0 && j > 0) {
dp[i][j] -= dp[i - 1][j - 1];
}
}
}
// to store the answer
int ans = int.MinValue;
// generate all possible submatrices
// of order k * k
for (int i = k - 1; i < n; i++) {
for (int j = k - 1; j < n; j++) {
// compute sum of submatrix
// of order k * k
int sum = dp[i][j];
// remove the submatrix ending at top
if (i >= k) {
sum -= dp[i - k][j];
}
// remove the submatrix ending at left
if (j >= k) {
sum -= dp[i][j - k];
}
// add the overlapping submatrix
if (i >= k && j >= k) {
sum += dp[i - k][j - k];
}
// update the maximum sum
ans = Math.Max(ans, sum);
}
}
return ans;
}
static void Main() {
List<List<int>> mat = new List<List<int>> {
new List<int> { 1, 2, -1, 4 },
new List<int> { -8, -3, 4, 2 },
new List<int> { 3, 8, 10, -8 },
new List<int> { -4, -1, 1, 7 }
};
int k = 3;
Console.WriteLine(maximumSum(mat, k));
}
}
JavaScript
// Function to find the submatrix of
// order k * k with maximum sum of elements.
function maximumSum(mat, k) {
let n = mat.length;
// create 2d array to store sum
// elements of submatrices
let dp = new Array(n);
for (let i = 0; i < n; i++) {
dp[i] = new Array(n).fill(0);
}
// calculate the sum of submatrices
for (let i = 0; i < n; i++) {
for (let j = 0; j < n; j++) {
// add the current element
dp[i][j] = mat[i][j];
// add the submatrix ending at left
if (j > 0) {
dp[i][j] += dp[i][j - 1];
}
// add the submatrix ending at top
if (i > 0) {
dp[i][j] += dp[i - 1][j];
}
// remove the overlapping submatrix
if (i > 0 && j > 0) {
dp[i][j] -= dp[i - 1][j - 1];
}
}
}
// to store the answer
let ans = -Infinity;
// generate all possible submatrices
// of order k * k
for (let i = k - 1; i < n; i++) {
for (let j = k - 1; j < n; j++) {
// compute sum of submatrix
// of order k * k
let sum = dp[i][j];
// remove the submatrix ending at top
if (i >= k) {
sum -= dp[i - k][j];
}
// remove the submatrix ending at left
if (j >= k) {
sum -= dp[i][j - k];
}
// add the overlapping submatrix
if (i >= k && j >= k) {
sum += dp[i - k][j - k];
}
// update the maximum sum
ans = Math.max(ans, sum);
}
}
return ans;
}
let mat = [
[ 1, 2, -1, 4 ],
[ -8, -3, 4, 2 ],
[ 3, 8, 10, -8 ],
[ -4, -1, 1, 7 ]
];
let k = 3;
console.log(maximumSum(mat, k));
Related Articles:
Given an n x n square matrix, find sum of all sub-squares of size k x k
Maximum sum rectangle in a 2D matrix
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem