PHP Program for Largest Sum Contiguous Subarray
Write an efficient program to find the sum of contiguous subarray within a one-dimensional array of numbers that has the largest sum.

Kadane's Algorithm:
Initialize: max_so_far = INT_MIN max_ending_here = 0 Loop for each element of the array (a) max_ending_here = max_ending_here + a[i] (b) if(max_so_far < max_ending_here) max_so_far = max_ending_here (c) if(max_ending_here < 0) max_ending_here = 0 return max_so_far
Explanation:
The simple idea of Kadane's algorithm is to look for all positive contiguous segments of the array (max_ending_here is used for this). And keep track of maximum sum contiguous segment among all positive segments (max_so_far is used for this). Each time we get a positive-sum compare it with max_so_far and update max_so_far if it is greater than max_so_far
Lets take the example: {-2, -3, 4, -1, -2, 1, 5, -3} max_so_far = max_ending_here = 0 for i=0, a[0] = -2 max_ending_here = max_ending_here + (-2) Set max_ending_here = 0 because max_ending_here < 0 for i=1, a[1] = -3 max_ending_here = max_ending_here + (-3) Set max_ending_here = 0 because max_ending_here < 0 for i=2, a[2] = 4 max_ending_here = max_ending_here + (4) max_ending_here = 4 max_so_far is updated to 4 because max_ending_here greater than max_so_far which was 0 till now for i=3, a[3] = -1 max_ending_here = max_ending_here + (-1) max_ending_here = 3 for i=4, a[4] = -2 max_ending_here = max_ending_here + (-2) max_ending_here = 1 for i=5, a[5] = 1 max_ending_here = max_ending_here + (1) max_ending_here = 2 for i=6, a[6] = 5 max_ending_here = max_ending_here + (5) max_ending_here = 7 max_so_far is updated to 7 because max_ending_here is greater than max_so_far for i=7, a[7] = -3 max_ending_here = max_ending_here + (-3) max_ending_here = 4
Program:
<?php
// PHP program to print largest
// contiguous array sum
function maxSubArraySum($a, $size)
{
$max_so_far = PHP_INT_MIN;
$max_ending_here = 0;
for ($i = 0; $i < $size; $i++)
{
$max_ending_here = $max_ending_here + $a[$i];
if ($max_so_far < $max_ending_here)
$max_so_far = $max_ending_here;
if ($max_ending_here < 0)
$max_ending_here = 0;
}
return $max_so_far;
}
// Driver code
$a = array(-2, -3, 4, -1,
-2, 1, 5, -3);
$n = count($a);
$max_sum = maxSubArraySum($a, $n);
echo "Maximum contiguous sum is " ,
$max_sum;
// This code is contributed by anuj_67.
?>
<?php
// PHP program to print largest
// contiguous array sum
function maxSubArraySum($a, $size)
{
$max_so_far = PHP_INT_MIN;
$max_ending_here = 0;
for ($i = 0; $i < $size; $i++)
{
$max_ending_here = $max_ending_here + $a[$i];
if ($max_so_far < $max_ending_here)
$max_so_far = $max_ending_here;
if ($max_ending_here < 0)
$max_ending_here = 0;
}
return $max_so_far;
}
// Driver code
$a = array(-2, -3, 4, -1,
-2, 1, 5, -3);
$n = count($a);
$max_sum = maxSubArraySum($a, $n);
echo "Maximum contiguous sum is " ,
$max_sum;
// This code is contributed by anuj_67.
?>
Output:
Maximum contiguous sum is 7
Another approach:
<?php
function maxSubArraySum(&$a, $size)
{
$max_so_far = $a[0];
$max_ending_here = 0;
for ($i = 0; $i < $size; $i++)
{
$max_ending_here = $max_ending_here + $a[$i];
if ($max_ending_here < 0)
$max_ending_here = 0;
/* Do not compare for all elements.
Compare only when max_ending_here > 0 */
else if ($max_so_far < $max_ending_here)
$max_so_far = $max_ending_here;
}
return $max_so_far;
// This code is contributed
// by ChitraNayal
?>
<?php
function maxSubArraySum(&$a, $size)
{
$max_so_far = $a[0];
$max_ending_here = 0;
for ($i = 0; $i < $size; $i++)
{
$max_ending_here = $max_ending_here + $a[$i];
if ($max_ending_here < 0)
$max_ending_here = 0;
/* Do not compare for all elements.
Compare only when max_ending_here > 0 */
else if ($max_so_far < $max_ending_here)
$max_so_far = $max_ending_here;
}
return $max_so_far;
// This code is contributed
// by ChitraNayal
?>
Time Complexity: O(n)
Algorithmic Paradigm: Dynamic Programming
Following is another simple implementation suggested by Mohit Kumar. The implementation handles the case when all numbers in the array are negative.
<?php
function maxSubArraySum($a, $size)
{
$max_so_far = $a[0];
$curr_max = $a[0];
for ($i = 1; $i < $size; $i++)
{
$curr_max = max($a[$i],
$curr_max + $a[$i]);
$max_so_far = max($max_so_far,
$curr_max);
}
return $max_so_far;
}
// Driver Code
$a = array(-2, -3, 4, -1,
-2, 1, 5, -3);
$n = sizeof($a);
$max_sum = maxSubArraySum($a, $n);
echo "Maximum contiguous sum is " .
$max_sum;
// This code is contributed
// by Akanksha Rai(Abby_akku)
?>
<?php
function maxSubArraySum($a, $size)
{
$max_so_far = $a[0];
$curr_max = $a[0];
for ($i = 1; $i < $size; $i++)
{
$curr_max = max($a[$i],
$curr_max + $a[$i]);
$max_so_far = max($max_so_far,
$curr_max);
}
return $max_so_far;
}
// Driver Code
$a = array(-2, -3, 4, -1,
-2, 1, 5, -3);
$n = sizeof($a);
$max_sum = maxSubArraySum($a, $n);
echo "Maximum contiguous sum is " .
$max_sum;
// This code is contributed
// by Akanksha Rai(Abby_akku)
?>
Output:
Maximum contiguous sum is 7
To print the subarray with the maximum sum, we maintain indices whenever we get the maximum sum.
<?php
// PHP program to print largest
// contiguous array sum
function maxSubArraySum($a, $size)
{
$max_so_far = PHP_INT_MIN;
$max_ending_here = 0;
$start = 0;
$end = 0;
$s = 0;
for ($i = 0; $i < $size; $i++)
{
$max_ending_here += $a[$i];
if ($max_so_far < $max_ending_here)
{
$max_so_far = $max_ending_here;
$start = $s;
$end = $i;
}
if ($max_ending_here < 0)
{
$max_ending_here = 0;
$s = $i + 1;
}
}
echo "Maximum contiguous sum is ".
$max_so_far."\n";
echo "Starting index ". $start . "\n".
"Ending index " . $end . "\n";
}
// Driver Code
$a = array(-2, -3, 4, -1, -2, 1, 5, -3);
$n = sizeof($a);
$max_sum = maxSubArraySum($a, $n);
// This code is contributed
// by ChitraNayal
?>
<?php
// PHP program to print largest
// contiguous array sum
function maxSubArraySum($a, $size)
{
$max_so_far = PHP_INT_MIN;
$max_ending_here = 0;
$start = 0;
$end = 0;
$s = 0;
for ($i = 0; $i < $size; $i++)
{
$max_ending_here += $a[$i];
if ($max_so_far < $max_ending_here)
{
$max_so_far = $max_ending_here;
$start = $s;
$end = $i;
}
if ($max_ending_here < 0)
{
$max_ending_here = 0;
$s = $i + 1;
}
}
echo "Maximum contiguous sum is ".
$max_so_far."\n";
echo "Starting index ". $start . "\n".
"Ending index " . $end . "\n";
}
// Driver Code
$a = array(-2, -3, 4, -1, -2, 1, 5, -3);
$n = sizeof($a);
$max_sum = maxSubArraySum($a, $n);
// This code is contributed
// by ChitraNayal
?>
Output:
Maximum contiguous sum is 7 Starting index 2 Ending index 6
Kadane's Algorithm can be viewed both as a greedy and DP. As we can see that we are keeping a running sum of integers and when it becomes less than 0, we reset it to 0 (Greedy Part). This is because continuing with a negative sum is way more worse than restarting with a new range. Now it can also be viewed as a DP, at each stage we have 2 choices: Either take the current element and continue with previous sum OR restart a new range. These both choices are being taken care of in the implementation.
Time Complexity: O(n)
Auxiliary Space: O(1)
Now try the below question
Given an array of integers (possibly some elements negative), write a C program to find out the *maximum product* possible by multiplying 'n' consecutive integers in the array where n ? ARRAY_SIZE. Also, print the starting point of the maximum product subarray.